下列函數(shù)中,在(0,+∞)上為增函數(shù)的是( 。
A、y=sinx
B、y=x•ex
C、y=|x-1|
D、y=(x-2)2+1
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過求導(dǎo)或圖象分析對(duì)A,B,C,D四個(gè)選項(xiàng)逐個(gè)分析,得出正確答案.
解答: 解:選項(xiàng)A中:y′=-cosx,∵-1≤cosx≤1,∴選項(xiàng)A不合題意,
選項(xiàng)B中:∵y′=ex(x+1)>0,∴函數(shù)y=x•ex在(0,+∞)上是增函數(shù),∴選項(xiàng)B符合題意,
選項(xiàng)C中:當(dāng)0<x<1時(shí)是減函數(shù),不合題意,
選項(xiàng)D中:當(dāng)0<x<2時(shí)是減函數(shù),不合題意,
故選:B.
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性問題,對(duì)選擇題也可采用排除法,本題是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖輸出的所有實(shí)數(shù)對(duì)(x,y)所對(duì)應(yīng)的點(diǎn)都在函數(shù)
 
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i5(1-i)=( 。
A、1+iB、i-1
C、2iD、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線2x+y-4=0過橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F2,且與橢圓E在第一象限的交點(diǎn)為M,與y軸交于點(diǎn)N,F(xiàn)1是橢圓E的左焦點(diǎn),且|MN|=|MF1|,則橢圓E的方程為( 。
A、
x2
5
+
y2
4
=1
B、
x2
4
+y2=1
C、
x2
4
+
y2
3
=1
D、
x2
5
+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y+a=0與曲線y=-
1-x2
有兩個(gè)公共點(diǎn),則a的取值范圍為( 。
A、[-
2
,-1
]
B、(-
2
,-1]
C、[1,
2
D、[1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把復(fù)數(shù)z的共軛復(fù)數(shù)記為
.
z
,已知(1+2i)
.
z
=4+3i,則z等于( 。
A、1+2iB、1-2i
C、2-iD、2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=
1
2
”是“直線(m+2)x+3my+1=0與直線(m+2)x+(m-2)y-3=0相互垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

清華大學(xué)給安陽市某三所重點(diǎn)中學(xué)6個(gè)自主招生的推薦名額,則每所中學(xué)至少分到一個(gè)名額的不同方法數(shù)為( 。
A、10B、18
C、20D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,M={x|x2-x≤0},函數(shù)f(x)=
1
x-1
的定義域?yàn)镈,則M∩(∁UD)=( 。
A、[0,1)B、(0,1)
C、[0,1]D、{1}

查看答案和解析>>

同步練習(xí)冊(cè)答案