設(shè)是數(shù)列的前項和,對于任意總有。

(I)求數(shù)列的通現(xiàn)公式

(Ⅱ)當(dāng)。

解析:(I)當(dāng)時,,  

數(shù)列是首項為,公比為的等比數(shù)列。

 w.w.w.k.s.5.u.c.o.m    

(Ⅱ)證明:當(dāng)時,令

    

   又

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)滿足,且

   (1)當(dāng)時,求的表達式;

   (2)設(shè),求證:;w.w.w.k.s.5.u.c.o.m 

(3)設(shè),對每一個,在之間插入,得到新數(shù)列,設(shè)是數(shù)列的前項和,試問是否存在正整數(shù),使?若存在求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)為數(shù)列的前項和,對任意的N,都有為常數(shù),且.(1)求證:數(shù)列是等比數(shù)列;

(2)設(shè)數(shù)列的公比,數(shù)列滿足 N,求數(shù)列的通項公式;(3)在滿足(2)的條件下,求證:數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市楊浦區(qū)高三上學(xué)期學(xué)業(yè)質(zhì)量調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)是數(shù)列的前項和,對任意都有成立, (其中、是常數(shù)).

(1)當(dāng),,時,求

(2)當(dāng),,時,

①若,求數(shù)列的通項公式;

②設(shè)數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“數(shù)列”.

如果,試問:是否存在數(shù)列為“數(shù)列”,使得對任意,都有

,且.若存在,求數(shù)列的首項的所

有取值構(gòu)成的集合;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省“十校”高三第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)為數(shù)列的前項和,對任意的,都有(為正常數(shù)).

(1)求證:數(shù)列是等比數(shù)列;

(2)數(shù)列滿足求數(shù)列的通項公式;

(3)在滿足(2)的條件下,求數(shù)列的前項和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖北省咸寧赤壁市期中新四校聯(lián)考高一(理科)數(shù)學(xué)試卷 題型:解答題

設(shè)數(shù)列的前項和為,.

   ⑴求證:數(shù)列是等差數(shù)列.

⑵設(shè)是數(shù)列的前項和,求使 對所有的都成立的最大正整數(shù)的值. (本題滿分12分)

 

查看答案和解析>>

同步練習(xí)冊答案