1.已知函數(shù)f(x)=x-1-lnx.
(1)求函數(shù)f(x)的極值;
(2)對?x>0,f(x)≥bx-2恒成立,求實數(shù)b的取值范圍.

分析 (1)令導(dǎo)數(shù)大于0解出增區(qū)間,令導(dǎo)數(shù)小于0,解出函數(shù)的減區(qū)間,然后由極值判斷規(guī)則確定出極值即可.
(2)由于f(x)≥bx-2恒成立,得到b≤1+$\frac{1}{x}$-$\frac{lnx}{x}$在(0,+∞)上恒成立,構(gòu)造函數(shù)g(x)=1+$\frac{1}{x}$-$\frac{lnx}{x}$,b≤g(x)min即可

解答 解:(1)f′(x)=1-$\frac{1}{x}$,
令f′(x)>0,得x>1,
列表:

x(0,1)1(1,+∞)
f′(x)-0+
f(x)0
∴函數(shù)y=f(x)的極小值為f(1)=0;
(2)依題意對?x∈(0,+∞),f(x)≥bx-2恒成立
等價于x-1-lnx≥bx-2在(0,+∞)上恒成立
可得b≤1+$\frac{1}{x}$-$\frac{lnx}{x}$在(0,+∞)上恒成立,
令g(x)=1+$\frac{1}{x}$-$\frac{lnx}{x}$,g′(x)=$\frac{lnx-2}{{x}^{2}}$,
令g′(x)=0,得x=e2
列表:
x(0,e2e2(e2,+∞)
g'(x)-0+
g(x)1-$\frac{1}{{e}^{2}}$
∴函數(shù)y=g(x)的最小值為g(e2)=1-$\frac{1}{{e}^{2}}$,
故b≤1-$\frac{1}{{e}^{2}}$.

點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查恒成立問題,著重考查分類討論思想與構(gòu)造函數(shù)思想的應(yīng)用,體現(xiàn)綜合分析問題與解決問題能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(2,x),$\overrightarrow$=(-1,2),且$\overrightarrow{a}$⊥$\overrightarrow$,則x的值是(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.己知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn為數(shù)列{an}的前n項和,則$\frac{2{S}_{n}+144}{{a}_{n}+5}$的最小值為(  )
A.4$\sqrt{19}$-4B.$\frac{27}{2}$C.$\frac{121}{9}$D.$\frac{67}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=4sinxcos(x-$\frac{π}{3}$)-$\sqrt{3}$
(1)求f(x)的最小正周期;
(2)求f(x)的對稱中心及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知三個集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-bx+2=0},問同時滿足B?A,A∪C=A的實數(shù)a,b是否存在?若存在,求出a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且∠DAB=$\frac{π}{3}$,PA=PD,點E為CD邊的中點,BD⊥PE.
(1)求證:平面PAD⊥平面ABCD;
(2)若∠APD=$\frac{π}{3}$,四棱錐P-ABCD的體積為2,求點A到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知 x,y∈(-1,1),則$\sqrt{{{({x+1})}^2}+{{({y-1})}^2}}+\sqrt{{{({x+1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y+1})}^2}}+\sqrt{{{({x-1})}^2}+{{({y-1})}^2}}$的最小值為$4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)$f(x)={log_2}({3^x}-1)$的定義域為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x-a|+|2x-a|(a<0).
(1)證明:f(x)+f(-$\frac{1}{x}$)≥6;
(2)若不等式f(x)<$\frac{1}{2}$的解集為非空集,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案