設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.
(1)f(x)的遞增區(qū)間是(0,+∞),遞減區(qū)間是(-1,0).
(2)(2-2ln 2,3-2ln 3].
【解析】
試題分析:解 (1)函數(shù)的定義域?yàn)?-1,+∞),
因?yàn)?i>f(x)=(1+x)2-2ln(1+x),
所以f′(x)=2=,
由f′(x)>0,得x>0;由f′(x)<0,得-1<x<0,
所以,f(x)的遞增區(qū)間是(0,+∞),遞減區(qū)間是(-1,0).
(2)方程f(x)=x2+x+a,即x-a+1-2ln(1+x)=0,
記g(x)=x-a+1-2ln(1+x)(x>-1),
則g′(x)=1-=,
由g′(x)>0,得x>1;
由g′(x)<0,得-1<x<1.
所以g(x)在[0,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增.
為使f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異的實(shí)根,
只須g(x)=0在[0,1)和(1,2]上各有一個(gè)實(shí)根,
于是有即
解得2-2ln 2<a≤3-2ln 3,
故實(shí)數(shù)a的取值范圍是(2-2ln 2,3-2ln 3].
考點(diǎn):導(dǎo)數(shù)的運(yùn)用,以及函數(shù)與方程
點(diǎn)評:解決的關(guān)鍵是根據(jù)導(dǎo)數(shù)判定函數(shù)單調(diào)性,以及函數(shù)的零點(diǎn)問題,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)設(shè)函數(shù)f(x)=.
(1)求f(x)的定義域;(2)判斷f(x)的奇偶性;(3)求證:f+f(x)=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)二項(xiàng)式定理及應(yīng)用專項(xiàng)訓(xùn)練(河北) 題型:填空題
設(shè)函數(shù)f(x)=(1-2x)10,則導(dǎo)函數(shù)f′(x)的展開式x2項(xiàng)的系數(shù)為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=(1+x)2-2ln (1+x).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com