19.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)的和為Sn,且滿足:當(dāng)n≥2時(shí),an=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$.
(1)證明:數(shù)列{$\sqrt{{S}_{n}}$}為等差數(shù)列.
(2)若數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}前n項(xiàng)的和為Tn,求Tn的表達(dá)式.

分析 (1)當(dāng)n≥2時(shí),an=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$,可得Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$.又?jǐn)?shù)列{an}的各項(xiàng)為正數(shù),可得$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}$=1,即可證明.
(2)由(1)可得:可得Sn.可得an.再利用“裂項(xiàng)求和”即可得出.

解答 (1)證明:∵當(dāng)n≥2時(shí),an=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$,∴Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$.
又?jǐn)?shù)列{an}的各項(xiàng)為正數(shù),∴$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$>0.
∴$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}$=1,
∴數(shù)列{$\sqrt{{S}_{n}}$}為等差數(shù)列,首項(xiàng)為1,公差為1.
(2)解:由(1)可得:$\sqrt{{S}_{n}}$=1+(n-1)=n,可得Sn=n2
∴當(dāng)n≥2時(shí),an=$\sqrt{{n}^{2}}+\sqrt{(n-1)^{2}}$=2n-1,
當(dāng)n=1時(shí)也成立,
∴an=2n-1.
∴$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
數(shù)列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}前n項(xiàng)的和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求函數(shù)y=9x-m•3x+1,x∈(0,2]的值域A.(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,則m,n,p,q從小到大排列順序是( 。
A.p<m<n<qB.m<p<q<nC.p<q<m<nD.m<n<p<q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2},\;\;x>0\\-f(x+1),x≤0.\end{array}\right.$則f(-3)的值為( 。
A.1B.-1C.0D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)$f(x)={log_{\frac{1}{3}}}(9x)•{log_3}\frac{x}{3},\frac{1}{9}≤x≤27$.
(Ⅰ)設(shè)t=log3x,用t表示f(x),并指出t的取值范圍;
(Ⅱ)求f(x)的最值,并指出取得最值時(shí)對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)為減函數(shù),若f(2)=0,則不等式(x-1)f(x-1)>0的解集為( 。
A.(-3,-1)B.(-3,1)∪(2,+∞)C.(-3,0)∪(1,3)D.(-1,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列命題中正確的有( 。﹤(gè).
①若兩條直線和第三條直線所成的角相等,則這兩條直線互相平行.
②空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).
③四面體的四個(gè)面中,最多有四個(gè)直角三角形.
④若兩個(gè)平面垂直,則一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無(wú)數(shù)條直線.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知f(1+x)=x2+2x-1,則f(x)=x2-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2x-2-x,定義域?yàn)镽;函數(shù)g(x)=2x+1-22x,定義域?yàn)閇-1,1].
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性(不必證明)并證明其奇偶性;
(Ⅱ)若方程g(x)=t有解,求實(shí)數(shù)t的取值范圍;
(Ⅲ) 若不等式f(g(x))+f(3am-m2-1)≤0對(duì)一切x∈[-1,1],a∈[-2,2]恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案