【題目】如圖,在直四棱柱中,底面
為等腰梯形,
,
,
,
,
、
、
分別是棱
、
、
的中點(diǎn).
(1)證明:直線平面
;
(2)求證:面面
.
【答案】(1)證明見(jiàn)解析 (2)證明見(jiàn)解析
【解析】試題分析:
(1)由題意結(jié)合幾何關(guān)系可證得,結(jié)合線面平行的判斷定理即可證得結(jié)論;
(2)由題意結(jié)合線面垂直的判斷定理即可證得平面
,然后利用面面垂直的判斷定理即可證得面
面
.
試題解析:
(1)在直四棱柱中,取
的中點(diǎn)
,連接
,
,
.
因?yàn)?/span>,
,且
,所以
,且
,
為平行四邊形,所以
.
又因?yàn)?/span>、
分別是棱
、
的中點(diǎn),
所以,
所以,
又因?yàn)?/span>平面
,
平面
,
所以直線平面
.
(2)連接,在直棱柱中,
平面
,
平面
,
所以,
因?yàn)榈酌?/span>為等腰梯形,
,
,
是棱
的中點(diǎn),
所以,
為正三角形,
,
為等腰三角形,且
,
所以,
又因?yàn)?/span>與
都在平面
內(nèi)且交于點(diǎn)
,
所以平面
,而
平面
,
所以面面
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )
A. y與x具有正的線性相關(guān)關(guān)系
B. 若給變量x一個(gè)值,由回歸直線方程=0.85x-85.71得到一個(gè)
,則
為該統(tǒng)計(jì)量中的估計(jì)值
C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg
D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下:觀察圖形,回答下列問(wèn)題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù)
.
(1)求證: 不是
上的奇函數(shù);
(2)若是
上的單調(diào)函數(shù),求實(shí)數(shù)
的值;
(3)若函數(shù)在區(qū)間
上恰有3個(gè)不同的零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為
、
,上頂點(diǎn)為
,過(guò)
與
垂直的直線交
軸負(fù)半軸于
點(diǎn),且
.
(1)求橢圓的離心率;
(2)若過(guò)、
、
三點(diǎn)的圓恰好與直線
相切,求橢圓
的方程;
(3)過(guò)的直線
與(2)中橢圓交于不同的兩點(diǎn)
、
,則
的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市園林局準(zhǔn)備綠化一塊直徑為的半圓空地,
以外的地方種草,
的內(nèi)接正方形
為一水池,其余的地方種花,若
為定值),
,設(shè)
的面積為
,正方形
的面積為
(1)用表示
;
(2)當(dāng)為何值時(shí),
取得最大值,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量函數(shù)
(1)求函數(shù)
的值域;
(2)求方程,在
內(nèi)的所有實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>
為
的導(dǎo)函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校用“10分制”調(diào)查本校學(xué)生對(duì)教師教學(xué)的滿意度,現(xiàn)從學(xué)生中隨機(jī)抽取16名,以下莖葉圖記錄了他們對(duì)該校教師教學(xué)滿意度的分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(Ⅰ)若教學(xué)滿意度不低于9.5分,則稱該生對(duì)教師的教學(xué)滿意度為“極滿意”.求從這16人中隨機(jī)選取3人,至少有1人是“極滿意”的概率;
(Ⅱ)以這16人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校所有學(xué)生中(學(xué)生人數(shù)很多)任選3人,記表示抽到“極滿意”的人數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com