17.曲線y=sinx+ex在點(0,1)處的切線方程是y=2x+1.

分析 求出函數(shù)y=sinx+ex的導(dǎo)數(shù),求得切線的斜率,由斜截式方程,即可得到所求切線的方程.

解答 解:y=sinx+ex的導(dǎo)數(shù)為y′=cosx+ex
在點(0,1)處的切線斜率為k=cos0+e0=2,
即有在點(0,1)處的切線方程為y=2x+1.
故答案為:y=2x+1.

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運用直線方程是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y2=8x的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足$∠AFB=\frac{2π}{3}$,過線段AB的中點M作直線l的垂線,垂足為N,則$\frac{|MN|}{|AB|}$的最大值,是( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知奇函數(shù)f(x)在定義域(-3,3)上是減函數(shù),且滿足f(2x-1)+f(1)<0,則x的取值范圍為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x2-(a+2)x+a.
(Ⅰ)當(dāng)a>0時,求關(guān)于x的不等式f(x)>0解集;
(Ⅱ)當(dāng)x>1時,若f(x)≥-1恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,(2$\overrightarrow{a}$-3$\overrightarrow$)(2$\overrightarrow{a}$+$\overrightarrow$)=61.
(I)求|$\overrightarrow{a}$+$\overrightarrow$|;
(II)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=sin(ωx+φ)(其中ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則ω,φ的值為( 。
A.2,$\frac{π}{3}$B.2,-$\frac{π}{3}$C.4,$\frac{π}{3}$D.4,-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知P為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左支上一點,F(xiàn)1,F(xiàn)2分別是它的左右焦點,直線PF2與圓:x2+y2=a2相切,切點為線段PF2的中點,則該雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲箱子里裝有3個白球m個黑球,乙箱子里裝有m個白球,2個黑球,在一次試驗中,分別從這兩個箱子里摸出一個球,若它們都是白球,則獲獎
(1)當(dāng)獲獎概率最大時,求m的值;
(2)在(1)的條件下,班長用上述摸獎方法決定參加游戲的人數(shù),班長有4次摸獎機會(有放回摸。,當(dāng)班長中獎時已試驗次數(shù)ξ即為參加游戲人數(shù),如4次均未中獎,則ξ=0,求ξ的分布列和Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{^{2}}$=1的一個焦點在圓x2+y2-2x-8=0上,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{\sqrt{11}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊答案