【題目】已知函數(shù).

1)若函數(shù)圖像在點(diǎn)處的切線斜率為時(shí),求的值,并求此時(shí)函數(shù)的單調(diào)區(qū)間;

2)若,為函數(shù)的兩個(gè)不同極值點(diǎn),證明:.

【答案】1,減區(qū)間為,無增區(qū)間.2)見解析

【解析】

1)根據(jù)導(dǎo)數(shù)幾何意義列式解得的值,再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)符號(hào)確定函數(shù)單調(diào)區(qū)間,(2)先取對(duì)數(shù)化簡(jiǎn)所證不等式為,再通過極值點(diǎn)條件化簡(jiǎn)再轉(zhuǎn)化不等式為,令,轉(zhuǎn)化不等式為,最后根據(jù)導(dǎo)數(shù)研究函數(shù)單調(diào)性,即可證明不等式.

1)解:求得

當(dāng)時(shí),,所以有,

,所以當(dāng)時(shí),,單調(diào)遞增:當(dāng)時(shí),,單調(diào)遞減,故,所以.

,故的單調(diào)減區(qū)間為,無增區(qū)間.

2)要證:,也即證:,

,所以,為方程的兩根,

,即證,而①-②得,

即證:,不妨設(shè),

則證:,所以,設(shè),

,

單調(diào)遞增,,即結(jié)論成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線的方程為,.

(1)若在兩坐標(biāo)軸上的截距相等,求的方程;

(2)若與兩坐標(biāo)軸圍成的三角形的面積為6,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),函數(shù)是否存在零點(diǎn)?如果存在,求出零點(diǎn);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an},其前n項(xiàng)和為Sn,若S10100,a1,a2,a5成等比數(shù)列.

1)求{an}的通項(xiàng)公式;

2bnanan+1+an+an+1+1,求數(shù)列的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.

(1)求線段AB的中點(diǎn)M的軌跡C的方程;

(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(diǎn)(3,-2)且與橢圓4x2+9y2=36有相同的焦點(diǎn).

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)M在雙曲線上,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),且|MF1|+|MF2|=6,試判別△MF1F2的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓過點(diǎn),離心率為,左右焦點(diǎn)分別為,過點(diǎn)的直線交橢圓于兩點(diǎn)。

(1)求橢圓的方程;

(2)當(dāng)的面積為時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,底面為正方形的四棱錐PABCD中,AB=2PA=4,PB=PD=ACBD相交于點(diǎn)O,EPD中點(diǎn).

(1)求證:EO//平面PBC;

(2)設(shè)線段BC上點(diǎn)F滿足CF=2BF,求銳二面角EOFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2x3+ax2+bx+1的極值點(diǎn)為﹣11

1)求函數(shù)fx)的解析式;

2)求fx)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案