【題目】在邊長(zhǎng)為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足,將沿直線折到的位置. 在翻折過程中,下列結(jié)論成立的是(

A.在邊上存在點(diǎn),使得在翻折過程中,滿足平面

B.存在,使得在翻折過程中的某個(gè)位置,滿足平面平面

C.,當(dāng)二面角為直二面角時(shí),

D.在翻折過程中,四棱錐體積的最大值記為,的最大值為

【答案】D

【解析】

利用反證法可證明A、B錯(cuò)誤,當(dāng)且二面角為直二面角時(shí),計(jì)算可得,從而C錯(cuò)誤,利用體積的計(jì)算公式及放縮法可得,從而可求的最大值為,因此D正確.

對(duì)于A,假設(shè)存在,使得平面,

如圖1所示,

因?yàn)?/span>平面,平面平面,故,

但在平面內(nèi),是相交的,

故假設(shè)錯(cuò)誤,即不存在,使得平面,故A錯(cuò)誤.

對(duì)于B,如圖2,

的中點(diǎn)分別為,連接,

因?yàn)?/span>為等邊三角形,故,

因?yàn)?/span>,故

所以均為等邊三角形,故,,

因?yàn)?/span>,,故共線,

所以,因?yàn)?/span>,故平面,

平面,故平面平面,

若某個(gè)位置,滿足平面平面,則在平面的射影在上,也在上,故在平面的射影為,所以,

此時(shí),這與矛盾,故B錯(cuò)誤.

對(duì)于C,如圖3(仍取的中點(diǎn)分別為,連接

因?yàn)?/span>,所以為二面角的平面角,

因?yàn)槎娼?/span>為直二面角,故,所以,

,故平面,因平面,故.

因?yàn)?/span>,所以.

中,

中,,故C錯(cuò).

對(duì)于D,如圖4(仍取的中點(diǎn)分別為,連接),

在底面上的射影,則上.

因?yàn)?/span>,所以,所以.

,

,則,

當(dāng)時(shí),;當(dāng)時(shí),.

所以為增函數(shù),在為減函數(shù),故.

故D正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1取何值時(shí),方程)無解?有一解?有兩解?有三解?

2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請(qǐng)選擇適當(dāng)?shù)奶骄宽樞颍芯亢瘮?shù)的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

(本題滿分15分)已知m1,直線,

橢圓分別為橢圓的左、右焦點(diǎn).

)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;

)設(shè)直線與橢圓交于兩點(diǎn),,

的重心分別為.若原點(diǎn)在以線段

為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為一個(gè)等腰三角形形狀的空地,腰CA的長(zhǎng)為3(百米),底AB的長(zhǎng)為4(百米).現(xiàn)決定在該空地內(nèi)筑一條筆直的小路EF(寬度不計(jì)),將該空地分成一個(gè)四邊形和一個(gè)三角形,設(shè)分成的四邊形和三角形的周長(zhǎng)相等、面積分別為S1S2.

(1) 若小路一端EAC的中點(diǎn),求此時(shí)小路的長(zhǎng)度;

(2) 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線的斜率為2的切線方程;

2)證明:

3)確定實(shí)數(shù)的取值范圍,使得存在,當(dāng)時(shí),恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,給定個(gè)整點(diǎn),其中.

(Ⅰ)當(dāng)時(shí),從上面的個(gè)整點(diǎn)中任取兩個(gè)不同的整點(diǎn),求的所有可能值;

(Ⅱ)從上面個(gè)整點(diǎn)中任取個(gè)不同的整點(diǎn),.

i)證明:存在互不相同的四個(gè)整點(diǎn),滿足,;

ii)證明:存在互不相同的四個(gè)整點(diǎn),滿足,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的焦點(diǎn)是,,且過點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過左焦點(diǎn)的直線與橢圓相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).問橢圓上是否存在點(diǎn),使線段和線段相互平分?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓E的左焦點(diǎn)且與x軸垂直的直線與橢圓E相交于的P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),的面積為.

1)求橢圓E的方程;

2)點(diǎn)MN為橢圓E上不同兩點(diǎn),若,求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓C.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線上C交于A,B兩點(diǎn),是否存在l,使得點(diǎn)在以AB為直徑的圓外.若存在,求出k的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案