【題目】對(duì)于定義域?yàn)?/span>的函數(shù),若滿足①;②當(dāng),且時(shí),都有;③當(dāng),且時(shí), ,則稱為“偏對(duì)函數(shù)”.現(xiàn)給出四個(gè)函數(shù): ; . 則其中是“偏對(duì)稱函數(shù)”的函數(shù)個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
【答案】C
【解析】經(jīng)檢驗(yàn), 都滿足條件①;即條件②等價(jià)于函數(shù) 在區(qū)間 上單調(diào)遞減,在區(qū)間 上單調(diào)遞增,而容易驗(yàn)證 是奇函數(shù),由及函數(shù)的性質(zhì)可知, 在區(qū)間和上單調(diào)性相同,故不滿足條件②,由復(fù)合函數(shù)的單調(diào)性法則知在區(qū)間單調(diào)遞減,顯然在上單調(diào)遞增,故滿足條件②,當(dāng)時(shí), ,故不滿足條件②,,滿足條件②,
對(duì)于,不妨設(shè) ,則 , ,所以 滿足 ③, 對(duì)于 , , 在上遞減, 在 上遞增,所以 , , 遞增, ,不妨設(shè) ,則 ,
, 所以 滿足 ③,所以“偏對(duì)稱函數(shù)”的函數(shù)個(gè)數(shù)為 . 故選.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點(diǎn),求點(diǎn)A到平面CED的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】社會(huì)公眾人物的言行一定程度上影響著年輕人的人生觀、價(jià)值觀.某媒體機(jī)構(gòu)為了解大學(xué)生對(duì)影視、歌星以及著名主持人方面的新聞(簡(jiǎn)稱:“星聞”)的關(guān)注情況,隨機(jī)調(diào)查了某大學(xué)的位大學(xué)生,得到信息如下表:
(Ⅰ)從所抽取的人內(nèi)關(guān)注“星聞”的大學(xué)生中,再抽取三人做進(jìn)一步調(diào)查,求這三人性別不全相同的概率;
(Ⅱ)是否有以上的把握認(rèn)為“關(guān)注‘星聞’與性別有關(guān)”,并說明理由;
(Ⅲ)把以上的頻率視為概率,若從該大學(xué)隨機(jī)抽取位男大學(xué)生,設(shè)這人中關(guān)注“星聞”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附: .
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某綜藝節(jié)目為增強(qiáng)娛樂性,要求現(xiàn)場(chǎng)嘉賓與其場(chǎng)外好友連線互動(dòng).凡是拒絕表演節(jié)目的好友均無連線好友的機(jī)會(huì);凡是選擇表演節(jié)目的好友均需連線未參加過此活動(dòng)的個(gè)好友參與此活動(dòng),以此下去.
(Ⅰ)假設(shè)每個(gè)人選擇表演與否是等可能的,且互不影響,則某人選擇表演后,其連線的個(gè)好友中不少于個(gè)好友選擇表演節(jié)目的概率是多少?
(Ⅱ)為調(diào)查“選擇表演者”與其性別是否有關(guān),采取隨機(jī)抽樣得到如下列表:
選擇表演 | 拒絕表演 | 合計(jì) | |
男 | 50 | 10 | 60 |
女 | 10 | 10 | 20 |
合計(jì) | 60 | 20 | 80 |
①根據(jù)表中數(shù)據(jù),是否有的把握認(rèn)為“表演節(jié)目”與好友的性別有關(guān)?
②將此樣本的頻率視為總體的概率,隨機(jī)調(diào)查名男性好友,設(shè)為個(gè)人中選擇表演的人數(shù),求的分布列和期望.
附:;
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四種說法:
①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點(diǎn)的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(1,0),傾斜角為 .
(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換 后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2.
(ⅰ)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ⅱ)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù).利用(ⅰ)的結(jié)果,求E(X).
附: ≈12.2.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
有時(shí)可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).
(1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com