,是兩條不同的直線,,,是三個不同的平面.有下列四個命題:
①若,,則;②若,,則;
③ 若,,則;④ 若,,則
其中錯誤命題的序號是(      )
A.①④B.①③C.②③④D.②③
D

試題分析:對于①若,,則;兩個平行平面中的兩條直線的位置關系可能是異面直線,錯誤
對于②若,,則;,符合面面垂直的判定定理,成立。
對于③ 若,,,則;,垂直于同一平面的兩直線平行,則可知m//n,故根據(jù)平行的傳遞性可知成立。
對于④ 若,,則.可能m平行與平面,因此錯誤,故選D.
點評:解決的關鍵是對于空間中線面垂直以及面面垂直的判定定理和性質(zhì)定理的熟練運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F(xiàn)分別為AB、CB中點,過直線EF作棱柱的截面,若截面與平面ABC所成的二面角的大小為60º,則截面的面積為(    ).

A.3或1    B.1    C.4或1    D.3或4  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在直棱柱中,當?shù)酌嫠倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005715557526.png" style="vertical-align:middle;" />滿足      時,有成立.(填上你認為正確的一個條件即可)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為兩個平面,為兩條直線,且,有如下兩個命題:
①若;②若. 那么( )
A.①是真命題,②是假命題B.①是假命題,②是真命題
C.①、②都是真命題D.①、②都是假命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是三個不重合的平面,l是直線,給出下列命題:
①若,則;  ②若
③若l上存在兩點到的距離相等,則; ④若
其中正確的命題是(    )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三個平面,若,且相交但不垂直,分別為內(nèi)的直線,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖4,在三棱柱中,△是邊長為的等邊三角形,
平面,,分別是,的中點.

(1)求證:∥平面;
(2)若上的動點,當與平面所成最大角的正切值為時,
求平面 與平面所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在長方體中,,分別是面,面的中心,則所成的角為(    )
A.  B.    C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求證:AB⊥平面PBC
(2)求三棱錐C-ADP的體積
(3)在棱PB上是否存在點M使CM∥平面PAD?
若存在,求的值。若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案