【題目】已知函數(shù)在區(qū)間上有最大值和最小值.設(shè)

1)求的值

2)若不等式上有解,求實(shí)數(shù)的取值范圍;

3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

【答案】1.23

【解析】

(1)由函數(shù),所以在區(qū)間上是增函數(shù),故,由此解得的值;

(2)由(1)可得,所以上有解,等價(jià)于上有解, 上有解, ,,即可求得的取值范圍;

(3)原方程可化為,,有兩個(gè)不同的實(shí)數(shù)解,其中,或,即可求得實(shí)數(shù)的取值范圍.

(1)函數(shù),

,

在區(qū)間上是增函數(shù),

故:,解得.

(2)由(1)可得,

上有解

等價(jià)于上有解

上有解

,

,

,

的取值范圍為

(3)原方程可化為

有兩個(gè)不同的實(shí)數(shù)解

其中,或

——①,解得

——②,不等式組②無實(shí)數(shù)解.

實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)函數(shù)

(1)如果,那么實(shí)數(shù)___;

(2)如果函數(shù)有且僅有兩個(gè)零點(diǎn),那么實(shí)數(shù)的取值范圍是___.

【答案】或4;

【解析】

試題分析:由題意 ,解得;

第二問如圖:

的圖象是由兩條以 為頂點(diǎn)的射線組成,當(dāng)A,B 之間(包括不包括)時(shí),函數(shù)有兩個(gè)交點(diǎn),即有兩個(gè)零點(diǎn).所以 的取值范圍為

考點(diǎn):1.分段函數(shù)值;2.函數(shù)的零點(diǎn).

型】填空
結(jié)束】
15

【題目】已知函數(shù)的部分圖象如圖所示.

)求函數(shù)的解析式.

)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,則下列結(jié)論正確的是(

A.直線的傾斜角是B.若直線

C.點(diǎn)到直線的距離是D.與直線平行的直線方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如下圖所示的頻率分布直方圖.

(I)寫出a的值;

(II)試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);

(III)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漢字聽寫大會(huì)不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測(cè)試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測(cè)試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.

若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;

試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);

已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線為參數(shù)),曲線,將的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)縮短為原來的得到曲線.

(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;

(2)若點(diǎn)為曲線上的任意一點(diǎn),為曲線上的任意一點(diǎn),求線段的最小值,并求此時(shí)的的坐標(biāo);

(3)過(2)中求出的點(diǎn)做一直線,交曲線兩點(diǎn),求面積的最大值(為直角坐標(biāo)系的坐標(biāo)原點(diǎn)),并求出此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的對(duì)邊分別為,且,若的面積為,則的最小值為( )

A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)有1000人,某次數(shù)學(xué)考試不同成績(jī)段的人數(shù)

(1)求該校此次數(shù)學(xué)考試平均成績(jī);

(2)計(jì)算得分超過141的人數(shù);

(3)甲同學(xué)每次數(shù)學(xué)考試進(jìn)入年級(jí)前100名的概率是,若本學(xué)期有4次考試, 表示進(jìn)入前100名的次數(shù),寫出的分布列,并求期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備將萬元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個(gè)建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤(rùn)(萬元)的概率分布列如表所示:

的期望;若投資乙項(xiàng)目一年后可獲得的利潤(rùn)(萬元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價(jià)格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為.若乙項(xiàng)目產(chǎn)品價(jià)格一年內(nèi)調(diào)整的次數(shù)(次數(shù))與的關(guān)系如表所示:

Ⅰ)求的值;

Ⅱ)求的分布列;

Ⅲ)若該公司投資乙項(xiàng)目一年后能獲得較多的利潤(rùn),的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案