19.使得二項(xiàng)式(3x+$\frac{1}{{x\sqrt{x}}}$)n的展開式中含有常數(shù)項(xiàng)的最小的n為5.

分析 利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),令x的指數(shù)為0方程有解.由于n,r都是整數(shù)求出最小的正整數(shù)n即可.

解答 解:二項(xiàng)式(3x+$\frac{1}{{x\sqrt{x}}}$)n展開式的通項(xiàng)為:
Tr+1=Cnr3r${x}^{\frac{5}{2}r-\frac{3}{2}n}$,
令$\frac{5}{2}r-\frac{3}{2}n$=0,
據(jù)題意此方程有解,
∴n=$\frac{5}{3}$r,
當(dāng)r=3時(shí),n的最小值為5.
故答案為:5.

點(diǎn)評(píng) 本題考查了利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知α為銳角,且cos($\frac{π}{2}$+α)=-$\frac{3}{5}$,則tanα=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知集合A={0,2},B={1,2,3},則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,則a的取值范圍是a≤0或a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=$\sqrt{2x+1}$+$\sqrt{3-4x}$的定義域?yàn)椋ā 。?table class="qanwser">A.$(-\frac{1}{2},\frac{3}{4})$B.$[{-\frac{1}{2},\frac{3}{4}}]$C.$(-∞,\frac{1}{2}]$D.$(-\frac{1}{2},0)∪(0,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=ex,g(x)=$\frac{1}{2}$x2+x+1,命題p:?x≥0,f(x)≥g(x),則( 。
A.p是假命題,¬p:?x<0,f(x)<g(x)B.p是假命題,¬p:?x≥0,f(x)<g(x)
C.p是真命題,¬p:?x<0,f(x)<g(x)D.p是真命題,¬p:?x≥0,f(x)<g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,點(diǎn)F1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P為橢圓上的一點(diǎn).
(1)當(dāng)∠F1PF2為直角,求P點(diǎn)橫坐標(biāo)的值;
(2)當(dāng)∠F1PF2=60°時(shí),求△F1PF2面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.命題p:關(guān)于x的方程x2+ax+2=0無(wú)實(shí)根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案