(本小題滿分12分)某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級(jí)子棉2噸、二級(jí)子棉1噸;生產(chǎn)乙種棉紗需耗一級(jí)子棉1噸、二級(jí)子棉2噸,每1噸甲種棉紗的利潤(rùn)是600元,每1噸乙種棉紗的利潤(rùn)是900元,工廠在生產(chǎn)這兩種棉紗的計(jì)劃中要求消耗一級(jí)子棉不超過(guò)300噸、二級(jí)子棉不超過(guò)250噸.甲、乙兩種棉紗應(yīng)各生產(chǎn)多少,能使利潤(rùn)總額最大?

 

【答案】

甲種面紗生產(chǎn)噸,乙種面紗生產(chǎn)

【解析】

試題分析:設(shè)生產(chǎn)甲、乙兩種棉紗分別為噸、噸,利潤(rùn)總額為元,

那么,.                                          …… 4分

作出以上不等式組所表示的平面區(qū)域(如圖),即可行域.                        ……8分

作直線,即直線,把直線向右上方平移至的位置時(shí),直線經(jīng)過(guò)可行域上的點(diǎn),且與原點(diǎn)距離最大,此時(shí)取最大值.

解方程組,得的坐標(biāo)為,

所以甲種面紗生產(chǎn)噸,乙種面紗生產(chǎn)噸時(shí),總利潤(rùn)最大.                 ……12分

考點(diǎn):本小題主要考查線性規(guī)劃問題的實(shí)際應(yīng)用,考查學(xué)生用所學(xué)知識(shí)解決實(shí)際問題的能力.

點(diǎn)評(píng):線性規(guī)劃的實(shí)際應(yīng)用問題,需要通過(guò)審題理解題意,找出各量的關(guān)系,找出線性約束條件,寫出所研究的目標(biāo)函數(shù),轉(zhuǎn)化成簡(jiǎn)單的線性規(guī)劃問題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案