(1)求證:f(x)是奇函數(shù)的充要條件是m2+n2=0;
(2)若常數(shù)n=-4且f(x)<0對(duì)任意x∈[0,1]恒成立,求m的取值范圍.
解:(1)證明:充分性:若m2+n2=0,則m=n=0,
∴f(x)=x|x|.又有f(-x)=-x|-x|=-x|x|=-f(x),∴f(x)為奇函數(shù).
必要性:若f(x)為奇函數(shù),∵x∈R,
∴f(0)=0,即n=0,∴f(x)=x|x+m|.
由f(1)=-f(-1),有|m+1|=|m-1|,∴m=0.
∴f(x)為奇函數(shù),則m=n=0,即m2+n2=0.
∴f(x)為奇函數(shù)的充要條件是m2+n2=0.
(2)當(dāng)x=0時(shí),m∈R,f(x)<0恒成立;
當(dāng)x∈(0,1]時(shí),原不等式可變形為|x+m|<,即-x+<m<-x.
當(dāng)n=-4時(shí),∴只需對(duì)x∈(0,1],滿足①②
對(duì)①式f1(x)=-x+在(0,1]上單調(diào)遞減,∴m<f1(1)=3.③
對(duì)②式,設(shè)f2(x)=-x,根據(jù)單調(diào)函數(shù)的定義可證明f2(x)在(0,1]上單調(diào)遞增,
∴f2(x)max=f(1).∴m>f2(1)=-5.④
由③④知-5<m<3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省東陽(yáng)中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022
已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com