【題目】已知命題,;命題關于的方程有兩個相異實數(shù)根.
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真命題,為假命題,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題首先結合對數(shù)函數(shù)二次函數(shù)性質求解命題p,q為真命題時的m的取值范圍,(1)中由為真命題可知p假q真,由此解不等式可求得實數(shù)的取值范圍;(2)中為真命題,為假命題可知兩命題一真一假,分兩種情況可分別求得m的取值范圍
試題解析:令,則在[0,2]上是增函數(shù),
故當時,最小值為,故若為真,則. ……2分
即時,方程有兩相異實數(shù)根,
∴; ……4分
(1)若為真,則實數(shù)滿足故,
即實數(shù)的取值范圍為……8分
(2)若為真命題,為假命題,則一真一假,
若真假,則實數(shù)滿足即;
若假真,則實數(shù)滿足即.
綜上所述,實數(shù)的取值范圍為. ……12[來源:學&
科目:高中數(shù)學 來源: 題型:
【題目】班級新年晚會設置抽獎環(huán)節(jié).不透明紙箱中有大小相同的紅球3個,黃球2個,且這5個球外別標有數(shù)字1、2、3、4、5.有如下兩種方案可供選擇:
方案一:一次性抽取兩球,若顏色相同,則獲得獎品;
方案二:依次有放回地抽取兩球,若數(shù)字之和大于5,則獲得獎品.
(1)寫出按方案一抽獎的試驗的所有基本事件;
(2)哪種方案獲得獎品的可能性更大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知橢圓經(jīng)過點,且其左右焦點的坐標分別是,.
(1)求橢圓的離心率及標準方程;
(2)設為動點,其中,直線經(jīng)過點且與橢圓相交于,兩點,若為的中點,是否存在定點,使恒成立?若存在,求點的坐標;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為了測量某濕地兩點間的距離,觀察者找到在同一直線上的三點.從點測得,從點測得,,從點測得.若測得,(單位:百米),則兩點的距離為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P-ABCD中,ABCD為梯形,AB//CD,BC⊥AB,AB=2,BC=,CD=PC=。
(I)點E在線段PB上,滿足CE//平面PAD,求的值。
(II)已知AC與BD的交點為M,若PM=1,且平面PAC⊥平面ABCD,求二面角P-BC-M平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M,N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為13;圓弧C2過點A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com