【題目】江夏一中將要舉行校園歌手大賽,現(xiàn)有33女參加,需要安排他們的出場(chǎng)順序.(結(jié)果用數(shù)字作答

1)如果3個(gè)女生都不相鄰,那么有多少種不同的出場(chǎng)順序?

2)如果女生甲在女生乙的前面(可以不相鄰),那么有多少種不同的出場(chǎng)順序?

3)如果3位男生都相鄰,且女生甲不在第一個(gè)出場(chǎng),那么有多少種不同的出場(chǎng)順序?

【答案】1144;(2360;(3108

【解析】

1)根據(jù)題意,用插空法分2步進(jìn)行①、先將3名男生排成一排,②、男生排好后有4個(gè)空位,在4個(gè)空位中任選3個(gè),安排3名女生,由分步計(jì)數(shù)原理計(jì)算可得答案;

2)根據(jù)題意,先不考慮甲乙的情況,將6人排成一排,又由女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一樣的,即可得答案;

3)根據(jù)題意,分3步進(jìn)行①、先將3名男生看成一個(gè)整體,考慮三人之間的順序,②、將除之外的兩名女生和三名男生的整體全排列,③、分析女生甲的安排方法,由分步計(jì)數(shù)原理計(jì)算可得答案.

1)根據(jù)題意,分2步進(jìn)行

①先將3名男生排成一排,有種情況,

②男生排好后有4個(gè)空位,在4個(gè)空位中任選3個(gè),安排3名女生,有種情況,

則有種不同的出場(chǎng)順序;

2)根據(jù)題意,將6人排成一排,有種情況,

其中女生甲在女生乙的前面和女生甲在女生乙的后面的排法是一樣的,

則女生甲在女生乙的前面的排法有種;

3)根據(jù)題意,分3步進(jìn)行

①先將3名男生看成一個(gè)整體,考慮三人之間的順序,有種情況,

②將除之外的兩名女生和三名男生的整體全排列,有種情況,

③女生甲不在第一個(gè)出場(chǎng),則女生甲的安排方法有種,

則有種符合題意的安排方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的說(shuō)法,錯(cuò)誤的是(

A.展開(kāi)式中的二項(xiàng)式系數(shù)之和為1024

B.展開(kāi)式中第6項(xiàng)的二項(xiàng)式系數(shù)最大

C.展開(kāi)式中第5項(xiàng)和第7項(xiàng)的二項(xiàng)式系數(shù)最大

D.展開(kāi)式中第6項(xiàng)的系數(shù)最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1當(dāng)時(shí),設(shè).討論函數(shù)的單調(diào)性;

2證明當(dāng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)在拋物線(xiàn)的準(zhǔn)線(xiàn)上,且橢圓的短軸長(zhǎng)為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線(xiàn)的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設(shè)點(diǎn)的中點(diǎn),射線(xiàn)為原點(diǎn))與橢圓交于點(diǎn),滿(mǎn)足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)預(yù)購(gòu)軟件服務(wù),有如下兩種方案:

方案一:軟件服務(wù)公司每日收取工廠(chǎng)60元,對(duì)于提供的軟件服務(wù)每次10元;

方案二:軟件服務(wù)公司每日收取工廠(chǎng)200元,若每日軟件服務(wù)不超過(guò)15次,不另外收費(fèi),若超過(guò)15次,超過(guò)部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.

(1)設(shè)日收費(fèi)為元,每天軟件服務(wù)的次數(shù)為,試寫(xiě)出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠(chǎng)對(duì)過(guò)去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形的直角梯形,,,為線(xiàn)段的中點(diǎn),平面,,為線(xiàn)段上一點(diǎn)(不與端點(diǎn)重合).

(Ⅰ)若,

(i)求證:平面

(ii)求直線(xiàn)與平面所成的角的大;

(Ⅱ)否存在實(shí)數(shù)滿(mǎn)足,使得平面與平面所成的銳角為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案