(本題12分)
求滿足下列條件的直線方程:
(1)過(guò)點(diǎn)(2,3),斜率是直線斜率的一半;
(2)過(guò)點(diǎn)(1,0),且過(guò)直線
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)如圖,已知兩條直線l1:x-3y+12=0,l2:3x+y-4=0,過(guò)定點(diǎn)P(-1,2)作一條直線l,分別與l1,l2交于M、N兩點(diǎn),若P點(diǎn)恰好是MN的中點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線//AB,與AC,BC依次交于E,F(xiàn),.求所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.已知直線經(jīng)過(guò)點(diǎn)(2,1),且斜率為2,
(1)求直線的方程;
(2)若直線與直線平行,且在軸上的截距為3,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
△ABC的兩條高所在直線的方程為2x-3y+1=0和x+y=0,頂點(diǎn)A的坐標(biāo)為(1,2),求BC邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知兩直線:和:,
(1)若與交于點(diǎn),求的值;
(2)若,試確定需要滿足的條件;
(3)若l1⊥l2 ,試確定需要滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)
過(guò)點(diǎn)的直線與軸的正半軸、軸的正半軸分別交于點(diǎn)、,為坐標(biāo)原點(diǎn),的面積等于6,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一條光線從點(diǎn)P(6,4)射出,經(jīng)y軸反射后經(jīng)過(guò)點(diǎn)Q(3,10),求入射光線和反射光線所在直線方程。 (12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題10分)
已知圓C上一點(diǎn),直線平分圓C,且圓C與直線相交的弦長(zhǎng)為,
求圓C的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com