已知圓C經(jīng)過A(1,),B(5,3),并且圓的面積被直線平分.求圓C的方程;

(Ⅰ)線段AB的中點(diǎn)E(3,1),
故線段AB中垂線的方程為,即          ……3分
由圓C經(jīng)過A、B兩點(diǎn),故圓心在線段AB的中垂線上
又直線平分圓的面積,所以直線經(jīng)過圓心
 解得 即圓心的坐標(biāo)為C(1,3),             ……6分
而圓的半徑|AC|=
故圓C的方程為     -------------------------------------------8分   

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題14分)已知圓C的圓心在直線上,且與直線相切,被直線截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知圓的圓心為,圓的圓心為,一動圓與圓內(nèi)切,與圓外切.
(Ⅰ)求動圓圓心的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點(diǎn),使得為鈍角?若存在,求出點(diǎn)橫坐標(biāo)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
在直角坐標(biāo)系xOy中,直線l與x軸正半軸和y軸正半軸分別相交于A,B兩點(diǎn),△AOB的內(nèi)切圓為圓M.
(1)如果圓M的半徑為1,l與圓M切于點(diǎn)C (,1+),求直線l的方程;
(2)如果圓M的半徑為1,證明:當(dāng)△AOB的面積、周長最小時(shí),此時(shí)△AOB為同一個三角形;
(3)如果l的方程為x+y-2-=0,P為圓M上任一點(diǎn),求的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題8分)
已知直線(為參數(shù)),圓(為參數(shù)).
(Ⅰ)當(dāng)時(shí),試判斷直線與圓的位置關(guān)系;
(Ⅱ)若直線與圓截得的弦長為1,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知是拋物線上任意一點(diǎn),則當(dāng)點(diǎn)到直線的距離最小時(shí),
點(diǎn)與該拋物線的準(zhǔn)線的距離是  

A.2B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過雙曲線的左焦點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,雙曲線左頂點(diǎn)為,若,則該雙曲線的離心率為(    )

A. B. C.3 D.2 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C過點(diǎn)(1,0),且圓心在軸的正半軸上,直線l:y=x-1被該圓所截得的弦長為2,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從它們每條曲線上至少取兩個點(diǎn),將其坐標(biāo)記錄于下表中:   

x
5

4


y
2
0
-4



(Ⅰ)求C1和C2的方程;
(Ⅱ)過點(diǎn)S(0,-)且斜率為k的動直線l交橢圓C1于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以線段AB為直徑的圓恒過這個點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案