如圖,點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1
的長軸的左、右端點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),直線PF的方程為
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直線PA的方程;
(Ⅱ)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.
(I)由題設(shè)知A(-6,0),B(6,0),直線AP的斜率為
3
3
,…(2分)
直線AP的方程為y=
3
3
(x+6)
,即x-
3
y+6=0.…(4分)
(Ⅱ)設(shè)M(m,0)(-6≤m≤6),…(5分)
由于M到直線AP的距離等于MB,
|m+6|
1+(
3
)
2
=|m-6|
.…(6分)
∵-6≤m≤6,∴
m+6
2
=6-m
解得m=2,
M的坐標(biāo)為(2,0).…(8分)
設(shè)P(x,y)是橢圓上任意一點(diǎn),則
x2
36
+
y2
20
=1

d=
(x-2)2+y2
=
4
9
x2-4x+24

當(dāng)x=
9
2
時d 有最小值
15
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線與橢圓
x2
9
+
y2
4
=1
交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為P,若直線的斜率為k1,直線OP的斜率為k2,則k1k2等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一束光線從點(diǎn)(0,1)出發(fā),經(jīng)過直線x+y-2=0反射后,恰好與橢圓x2+
y2
2
=1
相切,則反射光線所在的直線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右兩個焦點(diǎn),A、B為兩個頂點(diǎn),已知橢圓C上的點(diǎn)(1,
3
2
)
到F1、F2兩點(diǎn)的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的焦點(diǎn)F2作AB的平行線交橢圓于P、Q兩點(diǎn),求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y=-x2+2x,在點(diǎn)A(0,0),B(2,0)分別作拋物線的切線L1、L2
(1)求切線L1和L2的方程;
(2)求拋物線C與切線L1和L2所圍成的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過直角坐標(biāo)平面xOy中的拋物線y2=2px(p>0)的焦點(diǎn)F作一條傾斜角為
π
4
的直線與拋物線相交于A、B兩點(diǎn).
(1)求直線AB的方程;
(2)試用p表示A、B之間的距離;
(3)當(dāng)p=2時,求∠AOB的余弦值.
參考公式:(xA2+yA2)(xB2+yB2)=xAxB[xAxB+2p(xA+xB)+4p2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y2=2px(p>0)上縱坐標(biāo)為-p的點(diǎn)M到焦點(diǎn)的距離為2.
(Ⅰ)求p的值;
(Ⅱ)如圖,A,B,C為拋物線上三點(diǎn),且線段MA,MB,MC與x軸交點(diǎn)的橫坐標(biāo)依次組成公差為1的等差數(shù)列,若△AMB的面積是△BMC面積的
1
2
,求直線MB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,右焦點(diǎn)為F(1,0).
(Ⅰ)求此橢圓的方程;
(Ⅱ)若過點(diǎn)F且傾斜角為
π
4
的直線與此橢圓相交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C過點(diǎn)M(0,-2),N(3,1),且圓心C在直線x+2y+1=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)問是否存在滿足以下兩個條件的直線l:①斜率為1;②直線被圓C截得的弦為AB,以AB為直徑的圓C1過原點(diǎn).若存在這樣的直線,請求出其方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案