【題目】衡州市臨棗中學(xué)高二某小組隨機(jī)調(diào)查芙蓉社區(qū)160個人,以研究這一社區(qū)居民在20:00﹣22:00時間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式 | 看電視 | 看書 | 合計 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合計 | 40 | 120 | 160 |
下面臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分別列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時間段的休閑方式與性別有關(guān)系”?
【答案】解:(I)依題意,隨機(jī)變量X的取值為0,1,2,3,且每個男生在這一時間段以看書為休閑方式的概率為 , , ,
, .
所以X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
所以 .
(Ⅱ)根據(jù)樣本提供的2×2列聯(lián)表可得
所以我們有99%的把握認(rèn)為“在20:00﹣22:00時間段性別與休閑方式有關(guān)”
【解析】(Ⅰ)根據(jù)題意由相互獨(dú)立的概率事件公式求出各個不同隨機(jī)變量X的概率值列表可得再根據(jù)期望公式求出結(jié)果。(2)把數(shù)據(jù)代入已知的公式得出數(shù)值與標(biāo)準(zhǔn)值做比較得出結(jié)果。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對于任意的實數(shù)x,都有f(x)=4x2﹣f(﹣x),當(dāng)x∈(﹣∞,0)時,f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,則實數(shù)m的取值范圍是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的定義域為,求的取值范圍;
(2)設(shè)函數(shù),若對任意,總有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了研究年宣傳費(fèi)(單位:千元)對銷售量(單位:噸)和年利潤(單位:千元)的影響,搜集了近 8 年的年宣傳費(fèi)和年銷售量數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
38 | 40 | 44 | 46 | 48 | 50 | 52 | 56 | |
45 | 55 | 61 | 63 | 65 | 66 | 67 | 68 |
(Ⅰ)請補(bǔ)齊表格中 8 組數(shù)據(jù)的散點圖,并判斷與中哪一個更適宜作為年銷售量關(guān)于年宣傳費(fèi)的函數(shù)表達(dá)式?(給出判斷即可,不必說明理由)
(Ⅱ)若(Ⅰ)中的,且產(chǎn)品的年利潤與, 的關(guān)系為,為使年利潤值最大,投入的年宣傳費(fèi) x 應(yīng)為何值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 的兩頂點為A,B如圖,離心率為 ,過其焦點F(0,1)的直線l與橢圓交于C,D兩點,并與x軸交于點P,直線AC與直線BD交于點Q.
(Ⅰ)當(dāng) 時,求直線l的方程;
(Ⅱ)當(dāng)點P異于A,B兩點時,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體中, 平面, , , , .
(Ⅰ)求四面體的四個面的面積中,最大的面積是多少?
(Ⅱ)證明:在線段上存在點,使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一塊形狀為四棱柱的木料, 分別為的中點.
(1)要經(jīng)過和將木料鋸開,在木料上底面內(nèi)應(yīng)怎樣畫線?請說明理由;
(2)若底面是邊長為2的菱形, , 平面,且,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中, , , ,點是線段上的動點.
(1)當(dāng)點是的中點時,求證: 平面;
(2)線段上是否存在點,使得平面平面?若存在,試求出的長度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com