4.函數(shù)f(x)=$\sqrt{2sin(2x-\frac{π}{3})-1}$+lg(25-x2)定義域為(-5,-$\frac{17π}{12}$]∪[-$\frac{3π}{4}$,-$\frac{5π}{12}$]∪[$\frac{π}{4}$,$\frac{7π}{12}$]∪[$\frac{5π}{4}$,$\frac{19π}{12}$].

分析 要使函數(shù)有意義,只需滿足$\left\{\begin{array}{l}{2sin(2x-\frac{π}{3})-1≥0}\\{25-x^2>0}\end{array}\right.$,再根據(jù)三角函數(shù)的圖象和性質(zhì)解不等式.

解答 解:要使函數(shù)f(x)=$\sqrt{2sin(2x-\frac{π}{3})-1}$+lg(25-x2)有意義,
則$\left\{\begin{array}{l}{2sin(2x-\frac{π}{3})-1≥0}\\{25-x^2>0}\end{array}\right.$,
由不等式25-x2>0解得x∈(-5,5),---------①
由不等式2sin(2x-$\frac{π}{3}$)-1≥0解得,sin(2x-$\frac{π}{3}$)≥$\frac{1}{2}$,
所以,2x-$\frac{π}{3}$∈[2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z),
解得,x∈[kπ+$\frac{π}{4}$,kπ+$\frac{7π}{12}$],-------------②
綜合①②,對k討論如下:
當(dāng)k=0時,x∈[$\frac{π}{4}$,$\frac{7π}{12}$];
當(dāng)k=1時,x∈[$\frac{5π}{4}$,$\frac{19π}{12}$];($\frac{19π}{12}$≈4.97<5)
當(dāng)k=-1時,x∈[-$\frac{3π}{4}$,-$\frac{5π}{12}$];
當(dāng)k=-2時,x∈(-5,-$\frac{17π}{12}$];
因此,原函數(shù)的定義域為:(-5,-$\frac{17π}{12}$]∪[-$\frac{3π}{4}$,-$\frac{5π}{12}$]∪[$\frac{π}{4}$,$\frac{7π}{12}$]∪[$\frac{5π}{4}$,$\frac{19π}{12}$].

點評 本題主要考查了函數(shù)定義域的解法,涉及對數(shù)函數(shù)的定義域和三角不等式的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在正項數(shù)列{an}中,a1=$\frac{1}{3}$,an+1=an+($\frac{{a}_{n}}{n}$)2(n∈N*
(1)判斷數(shù)列{an}的單調(diào)性,并證明你的結(jié)論;
(2)求證:對n∈N*都有:$\frac{1}{3}$≤an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=x+a|x-1|在(0,+∞)上有最大值,則實數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三點A($\sqrt{3}+1$,1),B(1,1),C(1,2),則<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=x2-3x+3,x∈[0,3]的值域[$\frac{3}{4}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π),其圖象過點($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間,對稱中心;
(3)將函數(shù)y=f(x)的圖象上各點的橫坐際縮短倒原來的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A,B,P三點共線,O為平面內(nèi)任意一點.若涼$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+2$\overrightarrow{OB}$,則實數(shù)λ的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)為一次函數(shù),且單調(diào)遞增,滿足f[f(x)]=$\frac{1}{4}$x-$\frac{3}{4}$,若對于數(shù)列{an}滿足:a1=-1,a2=2,an+1=4f(an)-an-1+4(n≥2).
(Ⅰ)試求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}+2}{n}$×($\frac{1}{2}$)n-1,數(shù)列{bn}的前n項的和為Sn求證:Sn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=$\left\{\begin{array}{l}{0,x>0}\\{1,x=0}\\{2x-1,x<0}\end{array}\right.$,則f(f[f(6)])的值是( 。
A.0B.1C.-1D.3

查看答案和解析>>

同步練習(xí)冊答案