已知平面上一定點(diǎn)C(4,0)和一定直線(xiàn)l:x=1,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且
(1)問(wèn):點(diǎn)P在什么曲線(xiàn)上?并求出該曲線(xiàn)的方程;
(2)設(shè)直線(xiàn)l:y=kx+1與(1)中的曲線(xiàn)交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線(xiàn)段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值;若不存在,說(shuō)明理由.
【答案】分析:(1)設(shè)P的坐標(biāo)為(x,y),由,得,由此能判斷P點(diǎn)在雙曲線(xiàn)上,并能求出其方程.
(2)設(shè)A,B點(diǎn)的坐標(biāo)分別為(x1,y1)、(x2,y2),由得:(3-k2)x2-2kx-13=0,然后利用韋達(dá)定理和根的判別式能推導(dǎo)出.再由以AB為直徑的圓過(guò)D(0,-2),得,所以,由此能夠?qū)С龃嬖趉值為
解答:解:(1)設(shè)P的坐標(biāo)為(x,y),由

∴(x-4)2+y2-4(x-1)2=0,…(3分)
化簡(jiǎn)得
∴P點(diǎn)在雙曲線(xiàn)上,其方程為.…(4分)
(2)設(shè)A,B點(diǎn)的坐標(biāo)分別為(x1,y1)、(x2,y2),
得:(3-k2)x2-2kx-13=0,…(6分)
,
∵AB與雙曲線(xiàn)交于兩點(diǎn),
∴△>0,即4k2-4(3-k2)(-13)>0,
解得.…(8分)
∵若以AB為直徑的圓過(guò)D(0,-2),則AD⊥BD,
∴kAD•kBD=-1,…(10分)

∴(y1+2)(y2+2)+x1x2=0⇒(kx1+3)(kx2+3)+x1x2=0

解得,∴,故存在k值為.…(13分)
點(diǎn)評(píng):本題主要考查直線(xiàn)與圓錐曲線(xiàn)的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線(xiàn)與雙曲線(xiàn)的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上一定點(diǎn)C(4,0)和一定直線(xiàn)l:x=1,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0

(1)問(wèn):點(diǎn)P在什么曲線(xiàn)上?并求出該曲線(xiàn)的方程;
(2)設(shè)直線(xiàn)l:y=kx+1與(1)中的曲線(xiàn)交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線(xiàn)段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上一定點(diǎn)C(-1,0)和一直線(xiàn)l:x=-4,P(x,y)為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)求點(diǎn)P的軌跡方程;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),過(guò)點(diǎn)C的直線(xiàn)與點(diǎn)P的軌跡交于A,B兩點(diǎn),求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山二模)已知平面上一定點(diǎn)C(-1,0)和一定直線(xiàn)l:x=-4.P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,(
PQ
+2
PC
)(
PQ
-2
PC
)=0

(1)問(wèn)點(diǎn)P在什么曲線(xiàn)上,并求出該曲線(xiàn)方程;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),A、B兩點(diǎn)在點(diǎn)P的軌跡上,若
OA
OB
=(1+λ)
OC
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上一定點(diǎn)C(2,O)和直線(xiàn)l:x=8,P為該平面上一動(dòng)點(diǎn),作PQ⊥l,垂足為Q,且(
PC
+
1
2
PQ
)•(
PC
-
1
2
PQ
)=0

(1)問(wèn)點(diǎn)P在什么曲線(xiàn)上?并求出該曲線(xiàn)的方程;
(2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上一定點(diǎn)C(4,0)和一定直線(xiàn)為該平面上一動(dòng)點(diǎn),作,垂足為Q,且.

   (1)問(wèn)點(diǎn)P在什么曲線(xiàn)上?并求出該曲線(xiàn)的方程;

   (2)設(shè)直線(xiàn)與(1)中的曲線(xiàn)交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線(xiàn)段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案