(2010•江蘇二模)三次函數(shù)y=x3-x2-ax+b在(0,1)處的切線方程為y=2x+1,則a+b=
-1
-1
分析:欲求a+b值,利用在點(0,1)處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,最后列出關(guān)于a,b的等式.從而問題解決.
解答:解:∵y=x3-x2-ax+b,
∴y'=3x2-2x-a,當x=0時,y'=-a得切線的斜率為-a,
所以-a=2,a=-2,
又y=x3-x2-ax+b過(0,1),
∴b=1,
∴a+b=-2+1=-1.
故答案為:-1.
點評:本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江蘇二模)已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),當n∈N*時,f(n)∈N*,若f[f(n)]=3n,則f(5)的值等于
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江蘇二模)如圖是一塊長方形區(qū)域ABCD,AD=2(km),AB=1(km).在邊AD的中點O處,有一個可轉(zhuǎn)動的探照燈,其照射角∠EOF始終為
π
4
,設(shè)∠AOE=α(0≤α≤
4
),探照燈O照射在長方形ABCD內(nèi)部區(qū)域的面積為S.
(1)當0≤α<
π
2
時,寫出S關(guān)于α的函數(shù)表達式;
(2)當0≤α≤
π
4
時,求S的最大值.
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(OE自O(shè)A轉(zhuǎn)到OC,再回到OA,稱“一個來回”,忽略O(shè)E在OA及OC反向旋轉(zhuǎn)時所用時間),且轉(zhuǎn)動的角速度大小一定,設(shè)AB邊上有一點G,且∠AOG=
π
6
,求點G在“一個來回”中,被照到的時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江蘇二模)函數(shù)y=sinx+
3
cosx
(x∈R)的值域為
[-2,2]
[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江蘇二模)滿足sin
π
5
sinx+cos
5
cosx=
1
2
的銳角x=
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江蘇二模)在等腰△ABC中,已知AB=AC,B(-1,0),D(2,0)為AC的中點.
(1)求點C的軌跡方程;
(2)已知直線l:x+y-4=0,求邊BC在直線l上的投影EF長的最大值.

查看答案和解析>>

同步練習(xí)冊答案