【題目】已知是偶函數(shù),
.
(1)求的值,并判斷函數(shù)
在
上的單調(diào)性,說明理由;
(2)設(shè),若函數(shù)
與
的圖像有且僅有一個交點,求實數(shù)
的取值范圍;
(3)定義在上的一個函數(shù)
,如果存在一個常數(shù)
,使得式子
對一切大于1的自然數(shù)
都成立,則稱函數(shù)
為“
上的
函數(shù)”(其中,
).試判斷函數(shù)
是否為“
上的
函數(shù)”,若是,則求出
的最小值;若不是,則說明理由.(注:
).
【答案】(1),遞減;理由見解析;(2)
;(3)是,
.
【解析】
(1)由偶函數(shù)的定義可得f(﹣x)=f(x),結(jié)合對數(shù)函數(shù)的運算性質(zhì),解方程可得所求值;函數(shù)h(x)=f(x)x=log4(4x+1)﹣x在R上遞減,運用單調(diào)性的定義和對數(shù)函數(shù)的單調(diào)性,即可證明;
(2)由題意可得log4(4x+1)x=log4(a2x
a)有且只有一個實根,可化為2x+2﹣x=a2x
a,即有a
,化為a﹣1
,運用換元法和對勾函數(shù)的單調(diào)性,即可得到所求范圍.
(3)利用求解即可
(1)f(x)=log4(4x+1)+kx是偶函數(shù),
可得f(﹣x)=f(x),即log4(4﹣x+1)﹣kx=log4(4x+1)+kx,
即有log42kx,可得log44﹣x=﹣x=2kx,
由x∈R,可得k;
又函數(shù)h(x)=f(x)x=log4(4 x+1)﹣x=
在R上遞減,
理由:設(shè)x1<x2,則h(x1)﹣h(x2)=log4( )﹣log4(
)
=log4(4﹣x1+1)﹣log4(4﹣x2+1),
由x1<x2,可得﹣x1>﹣x2,可得log4(4﹣x1+1)>log4(4﹣x2+1),
則h(x1)>h(x2),即y=f(x)x在R上遞減;
(2)g(x)=log4(a2xa),若函數(shù)f(x)與g(x)的圖象有且僅有一個交點,
即為log4(4x+1)x=log4(a2x
a)有且只有一個實根,
可化為2x+2﹣x=a2xa,
即有a,化為a﹣1
,
可令t=12x(t>1),則2x
,
則a﹣1,
由9t34在(1,
)遞減,(
,+∞)遞增,
可得9t34的最小值為2
34=﹣4,
當a﹣1=﹣4時,即a=﹣3滿足兩圖象只有一個交點;
當t=1時,9t34=0,可得a﹣1>0時,即a>1時,兩圖象只有一個交點,
綜上可得a的范圍是(1,+∞)∪{﹣3}.
(3)是
函數(shù),理由如下:由題當任意的
,有
因為單調(diào)遞增,則
,故
的最小值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當定義域是[m,n]時,f(x)的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù)不存在“和諧區(qū)間”.
(3)已知:函數(shù)(a∈R,a≠0)有“和諧區(qū)間”[m,n],當a變化時,求出n﹣m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)
在點
處的切線方程;
(2)若函數(shù)有兩個不同極值點,求實數(shù)
的取值范圍;
(3)當時,求證:對任意
,
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形中,
分別為
的中點.現(xiàn)分別沿
將
和
折起,使得平面
平面
,平面
平面
,連接
,如圖2.
(1)求證:平面平面
;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列滿足,存在實數(shù)
,對任意
,都有
,則稱數(shù)列
有上界,
是數(shù)列
的一個上界,已知定理:單調(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數(shù)列滿足
,
(
),求證:1是非負數(shù)列
的一個上界,且數(shù)列
的極限存在,并求其極限;
(3)若正項遞增數(shù)列無上界,證明:存在
,當
時,恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為
,過
作
軸的垂線交橢圓
于點
(點
在
軸上方),斜率為
的直線交橢圓
于
,
兩點,過點
作直線
交橢圓
于點
,且
,直線
交
軸于點
.
(1)設(shè)橢圓的離心率為
,當點
為橢圓
的右頂點時,
的坐標為
,求
的值.
(2)若橢圓的方程為
,且
,是否存
在使得
成立?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)集由實數(shù)構(gòu)成,且滿足:若
(
且
),則
.
(1)若,試證明
中還有另外兩個元素;
(2)集合是否為雙元素集合,并說明理由;
(3)若中元素個數(shù)不超過8個,所有元素的和為
,且
中有一個元素的平方等于所有元素的積,求集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為
,點E,F,G分別為棱AB,
,
的中點,下列結(jié)論中,正確結(jié)論的序號是___________.
①過E,F,G三點作正方體的截面,所得截面為正六邊形;
②平面EFG;
③平面
;
④異面直線EF與所成角的正切值為
;
⑤四面體的體積等于
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com