A. | (1,0) | B. | ($\frac{1}{2}$,0) | C. | ($\frac{1}{3}$,0) | D. | ($\frac{1}{4}$,0) |
分析 由題意可得A關(guān)于x軸的對(duì)稱點(diǎn)為A′的坐標(biāo),當(dāng)點(diǎn)P為直線A′B與x軸的交點(diǎn)時(shí)|AP|+|PB|最小,求直線A′B的方程可得.
解答 解:由題意可得A(-3,8)關(guān)于x軸的對(duì)稱點(diǎn)為A′(-3,-8),
當(dāng)點(diǎn)P為直線A′B與x軸的交點(diǎn)時(shí)|AP|+|PB|最小,
由斜率公式可得A′B的斜率為$\frac{-8-2}{-3-2}$=2,
∴直線A′B的方程為y-2=2(x-2),
令y=0可得x=1,即P(1,0),
故選:A.
點(diǎn)評(píng) 本題考查兩點(diǎn)間的距離,利用對(duì)稱點(diǎn)轉(zhuǎn)化是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,f(-x)≠f(x) | B. | ?x∈R,f(-x)≠-f(x) | C. | ?x0∈R,f(-x0)≠f(x0) | D. | ?x0∈R,f(-x0)≠-f(x0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,5) | B. | (-∞,2)∪(2,3) | C. | (2,3) | D. | (-∞,2)∪(3,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com