已知f(x)與g(x)分別是定義在R上奇函數(shù)與偶函數(shù),若f(x)+g(x)=log2(x2+x+2),則f(1)等于


  1. A.
    -數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    1
  4. D.
    2
B
分析:由題意可得:f(1)+g(1)=log24=2,f(-1)+g(-1)=log22=1,結(jié)合函數(shù)的奇偶性可得f(-1)+g(-1)=-f(1)+g(1),進而求出答案.
解答:令x=1可得f(1)+g(1)=log24=2,
令x=-1可得f(-1)+g(-1)=log22=1,
因為f(x)與g(x)分別是定義在R上奇函數(shù)與偶函數(shù),
所以f(-1)+g(-1)=-f(1)+g(1),
所以-f(1)+g(1)=1,
所以解得f(1)=
故選B.
點評:本題主要考查函數(shù)的奇偶性,以及利用函數(shù)的這一性質(zhì)求函數(shù)值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知f(x)與g(x)是定義在R上的連續(xù)函數(shù),如果f(x)與g(x)僅當x=0時的函數(shù)值為0,且f(x)≥g(x),那么下列情形不可能出現(xiàn)的是


  1. A.
    0是f(x)的極大值,也是g(x)的極大值
  2. B.
    0是f(x)的極小值,也是g(x)的極小值
  3. C.
    0是f(x)的極大值,但不是g(x)的極值
  4. D.
    0是f(x)的極小值,但不是g(x)的極值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式
(1)當a=-2時,函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實數(shù)b的取值范圍;
(2)當x>1時,證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點P,Q,過線段PQ的中點R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊門市鐘祥市高三(上)11月聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當a=-2時,函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實數(shù)b的取值范圍;
(2)當x>1時,證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點P,Q,過線段PQ的中點R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊門市鐘祥市高三(上)11月聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(1)當a=-2時,函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實數(shù)b的取值范圍;
(2)當x>1時,證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點P,Q,過線段PQ的中點R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省沈陽二中等重點中學協(xié)作體高考預測數(shù)學試卷10(理科)(解析版) 題型:解答題

已知函數(shù)
(1)當a=-2時,函數(shù)F(x)=f(x)-g(x)在其定義域范圍是增函數(shù),求實數(shù)b的取值范圍;
(2)當x>1時,證明f(x)>h(x)成立;
(3)記函數(shù)f(x)與g(x)的圖象分別是C1、C2,C1、C2相交于不同的兩點P,Q,過線段PQ的中點R作垂直于x軸的垂線,與C1、C2分別交于M、N,問是否存在點R,使得曲線C1在M處的切線與曲線C2在N處的切線平行?若存在,試求出R點的坐標;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案