19.(x-1)($\frac{1}{x}$-1)5的展開式中的常數(shù)項(xiàng)是6.

分析 把($\frac{1}{x}$-1)5的按照二項(xiàng)式定理展開,可得(x-1)($\frac{1}{x}$-1)5的展開式中的常數(shù)項(xiàng).

解答 解:由于(x-1)($\frac{1}{x}$-1)5=(x-1)(${C}_{5}^{0}$•${(\frac{1}{x})}^{5}$-${C}_{5}^{1}$•${(\frac{1}{x})}^{4}$+${C}_{5}^{2}$•${(\frac{1}{x})}^{3}$-${C}_{5}^{3}$•${(\frac{1}{x})}^{2}$+${C}_{5}^{4}$•$\frac{1}{x}$-${C}_{5}^{5}$ ),
∴(x-1)($\frac{1}{x}$-1)5的展開式中的常數(shù)項(xiàng)是${C}_{5}^{4}$+1=6,
故答案為:6.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)點(diǎn)P為圓O:x2+y2=4上的一動點(diǎn),點(diǎn)Q為點(diǎn)P在x軸上的射影,動點(diǎn)M滿足:$\overrightarrow{MQ}$=$\frac{1}{2}$$\overrightarrow{PQ}$.
(1)求動點(diǎn)M的軌跡E的方程;
(2)過點(diǎn)F(-$\sqrt{3}$,0)作直線l交圓O于A、B兩點(diǎn),交(1)中的軌跡E于點(diǎn)C、D兩點(diǎn),問:是否存在這樣的直線l,使得$\sqrt{|AF|•|BF|}$=$\frac{|CF|+|DF|}{2}$成立?若存在,求出所有的直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)求$\frac{1}{{C}_{n}^{3}}$-$\frac{1}{{C}_{n}^{4}}$<$\frac{1}{{C}_{n}^{12}}$的解集.
(2)設(shè)[x]表示不超過x的最大整數(shù).${C}_{n}^{x}$=$\frac{n(n-1)…(n-[x]+1)}{x(x-1)…(x-[x]+1)}$,x∈[1,+∞).若x∈[$\frac{3}{2}$,3],求C${\;}_{8}^{x}$值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,長方體ABCD-A1B1C1D1的AA1=1,底面ABCD的周長為4.
(1)當(dāng)長方體ABCD-A1B1C1D1的體積最大時(shí),求直線BA1與平面A1CD所成角;
(2)線段A1C上是否存在一點(diǎn)P,使得A1C⊥平面BPD,若有,求出P點(diǎn)的位置,沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xoy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,直線l與x軸交于點(diǎn)E,與橢圓C交于A、B兩點(diǎn).當(dāng)直線l垂直于x軸且點(diǎn)E為橢圓C的右焦點(diǎn)時(shí),弦AB的長為$\frac{{2\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)是否存在點(diǎn)E,使得$\frac{1}{{E{A^2}}}+\frac{1}{{E{B^2}}}$為定值?若存在,請指出點(diǎn)E的坐標(biāo),并求出該定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某次足球賽共12支球隊(duì)參加,分三個(gè)階段進(jìn)行.
(1)小組賽:經(jīng)抽簽分成甲、乙兩組,每組6隊(duì)進(jìn)行單循環(huán)比賽,以幾分及凈勝球數(shù)取前兩名;
(2)半決賽:甲組第一名與乙組第二名,乙組第一名與甲組第二名作主、客場交叉淘汰賽(每兩隊(duì)主、客場各賽一場)決出勝者;
(3)決賽:兩個(gè)勝隊(duì)參加決賽一場,決出勝負(fù).
問:全部賽程共需比賽多少場?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:log2$\sqrt{\frac{7}{72}}$+log26-$\frac{1}{2}$log228.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0$)的離心率是$\frac{\sqrt{2}}{2}$,A1,A2是橢圓E的長軸的兩個(gè)端點(diǎn)(A2位于A1右側(cè)),B是橢圓在y軸正半軸上的頂點(diǎn),點(diǎn)F是橢圓E的右焦點(diǎn),點(diǎn)M是x軸上位于A2右側(cè)的一點(diǎn),且$\frac{1}{|FM|}$是$\frac{1}{|{A}_{1}M|}$與$\frac{1}{|{A}_{2}M|}$的等差中項(xiàng),|FM|=1.
(1)求橢圓E的方程以及點(diǎn)M的坐標(biāo);
(2)是否存在經(jīng)過點(diǎn)(0,$\sqrt{2}$)且斜率為k的直線l與橢圓E交于不同的兩點(diǎn)P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$與$\overrightarrow{{A}_{2}B}$共線?若存在,求出直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lg$\frac{1+x}{1-x}$,則“x<$\frac{9}{11}$”是“f(x)<1成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案