已知橢圓=1的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
(Ⅰ)求過(guò)點(diǎn)O、F,并且與橢圓的左準(zhǔn)線l相切的圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F且不與坐標(biāo)軸垂直的直線交橢圓于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.
解析:(Ⅰ)∵a2=2,b2=1,∴c=1,F(xiàn)(-1,0),l:x=-2. ∵圓過(guò)點(diǎn)O、F,∴圓心M在直線x=-上. 設(shè)M(,t),則圓半徑r=|(-)-(-2)|=, 由|OM|=r,得,解得t=±, ∴所求圓的方程為(x+)2+(y±)2=; (Ⅱ)設(shè)直線AB的方程為y=k(x+1)(k≠0), 代入=1. 整理得(1+2k2)x2+4k2x+2k2-2=0. ∵直線AB過(guò)橢圓的左焦點(diǎn)F, ∴方程有兩個(gè)不等實(shí)根. 記A(x1,y1),B(x2,y2),AB中點(diǎn)N(x0,y0), 則x1+x2=,x0=,y0=. ∴AB的垂直平分線NG的方程為 y-y0=(x-x0), 令y=0得xG=x0+ky0= =, ∵k≠0,∴-<xG<0. ∴點(diǎn)G橫坐標(biāo)的取值范圍為(-,0). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:013
已知橢圓=1的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在橢圓上,若P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)P到x軸的距離為
3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:022
已知橢圓=1的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在橢圓上.若∠PF1F2=90°,則點(diǎn)P到x軸的距離為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:重慶市西南師大附中2009屆高三第六次月考數(shù)學(xué)(理)試題 題型:013
已知橢圓=1的左、右焦點(diǎn)分別為F1、F2,則|F1F2|=2c,點(diǎn)A在橢圓上且且,則橢圓的離心率為
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過(guò)點(diǎn)T(t,m)的直線TA,TB與此橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設(shè)動(dòng)點(diǎn)P滿(mǎn)足PF2-PB2=4,求點(diǎn)P的軌跡;
(2)設(shè)x1=2,x2=,求點(diǎn)T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com