精英家教網 > 高中數學 > 題目詳情
7.已知橢圓C:$\frac{x^2}{16}+\frac{y^2}{9}=1$,斜率為1的直線與橢圓交于A,B.則線段AB的中點軌跡方程為$9x+16y=0({-\frac{16}{5}≤x≤\frac{16}{5}})或({-\frac{9}{5}≤y≤\frac{9}{5}})或(橢圓內部)$.

分析 設M(x,y),A(x1,y1),B(x2,y2),由題設條件知y1-y2=x1-x2.由中點坐標公式得x1+x2=2x,y1+y2=2y所以直線方程為9x+16y=0,由此可知點M的軌跡方程.

解答 解:設線段AB的中點M(x,y),A(x1,y1),B(x2,y2),
則有9x12+16y12=144,①
9x22+16y22=144,②
①-②得9(x1+x2)(x1-x2)+16(y1+y2)(y1-y2)=0.③
∵直線AB的斜率k=1,
∴y1-y2=x1-x2
由中點坐標公式得x1+x2=2x,y1+y2=2y.⑤
把④⑤代入到③中得9x+16y=0,
由:$\frac{x^2}{16}+\frac{y^2}{9}=1$,9x+16y=0,
得x=±$\frac{16}{5}$.
∴點M的軌跡方程為$9x+16y=0({-\frac{16}{5}≤x≤\frac{16}{5}})或({-\frac{9}{5}≤y≤\frac{9}{5}})或(橢圓內部)$,
故答案為$9x+16y=0({-\frac{16}{5}≤x≤\frac{16}{5}})或({-\frac{9}{5}≤y≤\frac{9}{5}})或(橢圓內部)$.

點評 本題考查軌跡的求法和應用,考查點差法,解題時要認真審題,仔細解答.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

10.數列{an}滿足a1=1,an=$\frac{{a}_{n-1}}{{a}_{n-1+1}}$(n≥2),則數列{an•an+1}的前10項和為( 。
A.$\frac{9}{10}$B.$\frac{10}{11}$C.$\frac{11}{10}$D.$\frac{12}{11}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.設函數f(x)=$\left\{\begin{array}{l}\frac{2}{x},x<-1\\-2,-1≤x<0\\ 3x-2,x≥0\end{array}$,
(1)在如圖的坐標系中作出f(x)的圖象;
(2)根據圖象寫出函數f(x)的單調區(qū)間和值域.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(sin53°cos23°,cos23°cos53°),$\overrightarrow$=(-cos53°sin23°,sin23°sin53°),$\overrightarrow{c}$=(1,t),$\overrightarrow{c}$∥($\overrightarrow{a}$+$\overrightarrow$),則t值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.函數f(x)是周期為2的奇函數,當x∈[0,1),f(x)=log2(x+1),則f($\frac{2015}{4}$)+log25=2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.函數$y=2sin(x+\frac{π}{6})$,$x∈[\frac{π}{6},\frac{2π}{3}]$的值域是[1,2].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若△ABC中,AB=5,面積是10$\sqrt{3}$,A=60°,則BC邊的是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知m,n是不同的直線,α,β是不同的平面,則下列命題是假命題的是(  )
A.若m?α,n?α,m∥n,則n∥αB.若α⊥β,n?α,n⊥β,則n∥α
C.若α∥β,m?α,則m∥βD.若α⊥β,α∩β=n,m⊥n,則m⊥β

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.“-3<m<0”是“f(x)=x+log2x+m在區(qū)間($\frac{1}{2}$,2)上有零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案