(本小題滿分12分)
已知函數(shù),
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間和極值點;
(Ⅱ)若函數(shù)有極值點,記過點與原點的直線斜率為。是否存在使?若存在,求出值;若不存在,請說明理由。
(1);
(2)不存在使過點與原點的直線斜率。
解析試題分析:(1)因為 (1分)
所以, 恒成立。因此 (3分)
在
因此 (5分)
(2)由(1)可知,在存在極小值.
∴,由條件
∴ (7分)
(注:此處也可以用換元法,轉(zhuǎn)證t-lnt=0(t=a/3)無解。采分相同)
設(shè)() (8分)
時,且當時,遞減;
當時,遞增; (10分)
在處取得最小值,;無零點.
即無解,
所以不存在使過點與原點的直線斜率 (12分)
考點:本題主要考查應(yīng)用導數(shù)研究函數(shù)的單調(diào)性及極值。
點評:典型題,本題屬于導數(shù)應(yīng)用中的基本問題,(2)通過研究函數(shù)的極值情況,確定得到含a的方程,通過研究方程解的有無,明確a的存在性。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),,設(shè).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)圖像上任意一點為切點的切線的斜率恒成立,求實數(shù)的最小值;
(Ⅲ)是否存在實數(shù)m,使得函數(shù)的圖像與函數(shù)的圖像恰有四個不同的交點?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)(其中e是自然對數(shù)的底數(shù),k為正數(shù))
(1)若在處取得極值,且是的一個零點,求k的值;
(2)若,求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當a=1時,求函數(shù)在區(qū)間上的最小值和最大值;
(Ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
本題滿分10分)
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導函數(shù)的最小值為.試求,,的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com