19.已知集合A={x|(3-x)(x+1)>0},B={x|-2<x≤1},則A∩B=( 。
A.(-1,1]B.(-2,3]C.(-2,-1)D.(-2,1-)∪[1,3)

分析 求出A中不等式的解集,找出A與B的交集即可.

解答 解:由A中不等式變形得:(x-3)(x+1)<0,
解得:-1<x<3,即A=(-1,3),
∵B={x|-2<x≤1}=(-2,1],
則A∩B=(-1,1],
故選:A.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.$\frac{\sqrt{2}}{3}$πB.2$\sqrt{2}$+2πC.$\frac{2\sqrt{2}}{3}$πD.2$\sqrt{2}$+$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在平面直角坐標系xOy中,若雙曲線${x^2}-\frac{y^2}{b^2}=1(b>0)$的焦點到其漸近線的距離等于拋物線y2=2px上的點M(1,2)到其焦點的距離,則實數(shù)b=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知A={x|x+1>0},B={-2,-1,0,1},則(∁RA)∩B=(  )
A.A={0,1,2}B.{-2}C.{-1,0,1}D.{-2,-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若實數(shù)k滿足0<k<9,則曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1與曲線$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1的(  )
A.離心率相等B.虛半軸長相等C.實半軸長相等D.焦距相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)的圖象為C,如下結論中正確的是①②③.
①圖象C關于直線x=$\frac{11}{12}$π對稱;      
②函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$)內是增函數(shù);
③圖象C關于點($\frac{2π}{3}$,0)對稱;   
④由y=3sin2x圖象向右平移$\frac{π}{3}$個單位可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,一個圓心角為直角的扇形AOB 花草房,半徑為1,點P 是花草房弧上一個動點,不含端點,現(xiàn)打算在扇形BOP 內種花,PQ⊥OA,垂足為Q,PQ 將扇形AOP
分成左右兩部分,在PQ 左側部分三角形POQ 為觀賞區(qū),在PQ 右側部分種草,已知種花的單位面積的造價為3a,種草的單位面積的造價為2a,其中a 為正常數(shù),設∠AOP=θ,種花的造價與種草的造價的和稱為總造價,不計觀賞區(qū)的造價,設總造價為f(θ)
(1)求f(θ)關于θ 的函數(shù)關系式;
(2)求當θ 為何值時,總造價最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,從左到右依次為:一個長方體截去一個角所得多面體的直觀圖,該多面體的正視圖,該多面體的側視圖(單位:cm)
(1)按照給出的尺寸,求該多面體的體積;
(2)在所給直觀圖中連結BC′,證明:BC′∥平面EFG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知圓C經(jīng)過A(-2,1),B(5,0)兩點,且圓心C在直線y=2x上.
(1)求圓C的標準方程;
(2)設動直線l:(m+2)x+(2m+1)y-7m-8=0與圓C相交于P,Q兩點,求|PQ|的最小值.

查看答案和解析>>

同步練習冊答案