12.已知橢圓M過定點B(-4,0),且和定圓(x-4)2+y2=16相切,則動圓圓心M的軌跡方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≤-2).

分析 動圓圓心為M,半徑為r,已知圓圓心為C,半徑為4 由題意知:MA=r,MC=r+4,或MA=r+3,MC=r,所以|MC-MA|=4 即動點M到兩定點的距離之差為常數(shù)4,M在以A、C為焦點的雙曲線上,且2a=4,2c=8,從而可得動圓圓心M的軌跡方程.

解答 解:動圓圓心為M,半徑為r,已知圓圓心為C,半徑為4 由題意知:MA=r,MC=r+4,或MA=r+3,MC=r,
所以|MC-MA|=4
即動點M到兩定點的距離之差為常數(shù)4,M在以A、C為焦點的雙曲線上,且2a=4,2c=8
∴b=2$\sqrt{3}$,
∴動圓圓心M的軌跡方程為:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.
故答案為:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

點評 本題考查圓與圓的位置關(guān)系,考查雙曲線的定義,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.點A、B、C、D在同一個球的球面上,${A}{B}={B}C=\sqrt{2}$,AC=2,若四面體ABCD體積的最大值為$\frac{2}{3}$,則這個球的表面積為( 。
A.B.$\frac{25π}{4}$C.$\frac{25π}{16}$D.$\frac{125π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲、乙兩地相距200千米,小型卡車從甲地勻速行駛到乙地,速度不得超過150千米/小時,已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(單位:千米/小時)的平方成正比,且比例系數(shù)為$\frac{1}{250}$;固定部分為40元.
(1)把全程運輸成本y元表示為速度v千米/小時的函數(shù),并指出這個函數(shù)的定義域,
(2)為了使全程運輸成本最小,卡車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.經(jīng)過點 P(1,1)的直線在兩坐標(biāo)軸上的截距都是正數(shù),若使截距之和最小,則該直線的方程是x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知:f(x)=ax2-ax-2
(1)?x∈R,使f(x)≤0恒成立,求實數(shù)a的取值范圍;
(2)?x∈R,使f(x)≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和記為Sn,且滿足Sn=2an-n(n∈N*).
(1)求a1,a2的值,并證明:數(shù)列{an+1}是等比數(shù)列;
(2)證明:$\frac{n}{2}-\frac{1}{3}<\frac{a_1}{a_2}+\frac{a_2}{a_3}+…+\frac{a_n}{{{a_{n+1}}}}<\frac{n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知正三棱錐P-ABC中,底邊AB=8,頂角∠APB=90°,則過P、A、B、C四點的球體的表面積是( 。
A.384πB.192πC.96πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且cos(B-C)+cosA=$\frac{3}{2}$,a2=bc.
(1)求角A的大;
(2)名△ABC的面積為4$\sqrt{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點到左焦點的最大距離是$\sqrt{3}+\sqrt{2}$,且點M(1,e)在橢圓C上,其中e為橢圓C的離心率,A,B是橢圓C上的兩點,且|AB|=$\sqrt{3}$.
(1)求橢圓C的方程;
(2)求△AOB面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案