如圖,ABCD-A1B1C1D1是正方體,在圖(1)中E、F分別是D1C1、B1B的中點(diǎn),畫(huà)出圖(1)(2)中有陰影的平面與平面ABCD的交線,并給出證明.

答案:
解析:

  

  思路分析:在圖(1)中過(guò)點(diǎn)E作EN平行于BB1交CD于點(diǎn)N,連結(jié)NB并延長(zhǎng)交EF的延長(zhǎng)線于點(diǎn)M,連結(jié)AM,則AM即為有陰影的平面與平面ABCD的交線.

  在圖(2)中,延長(zhǎng)DC,過(guò)點(diǎn)C1作C1M∥A1B交DC的延長(zhǎng)線于點(diǎn)M,連結(jié)BM,則BM即為有陰影的平面與平面ABCD的交線.


提示:

作截面時(shí),要注意截面的完整性,應(yīng)畫(huà)出截面圖與所給幾何體各個(gè)面的交線.確定兩個(gè)平面的交線,就是找兩個(gè)平面的兩個(gè)公共點(diǎn),一般題目都會(huì)給出一個(gè)公共點(diǎn),在確定另一個(gè)公共點(diǎn)時(shí)通常利用分別在已知的兩個(gè)平面內(nèi)的兩條直線的交點(diǎn)來(lái)確定.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:A1F⊥C1E;
(2)當(dāng)A1、E、F、C1共面時(shí),求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的是
①②④
①②④
.(把你認(rèn)為正確的結(jié)論都填上)
①BD∥平面CB1D1
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2

④二面角C-B1D1-C1的正切值是
2
;
⑤過(guò)點(diǎn)A1與異面直線AD與CB1成70°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的結(jié)論是
①②
①②
.(把你認(rèn)為正確的結(jié)論都填上)
①BD∥平面CB1D1
②AC1⊥平面CB1D1;
③過(guò)點(diǎn)A1與異面直線AD和CB1成90°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD—A1B1C1D1中,點(diǎn)O是B1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,對(duì)下列結(jié)論,錯(cuò)誤的是(    )

A.A、M、O三點(diǎn)共線                      B.A、M、O、A1四點(diǎn)共面

C.A、O、C、M四點(diǎn)共面                 D.B、B1、O、M四點(diǎn)共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省江門(mén)市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:A1F⊥C1E;
(2)當(dāng)A1、E、F、C1共面時(shí),求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案