中心在坐標(biāo)原點(diǎn)的橢圓,焦點(diǎn)在x軸上,焦距為4,離心率為,則該橢圓的方程為

A.     B.     C.     D.

 

【答案】

D

【解析】

試題分析:根據(jù)題意可知,由于中心在坐標(biāo)原點(diǎn)的橢圓,因此為橢圓為標(biāo)準(zhǔn)的方程,那么結(jié)合已知中焦點(diǎn)在x軸上,那么可知設(shè)為,那么可知2c="4,c=2," ,則利用=4,故所求的方程為選項(xiàng)D.

考點(diǎn):本試題主要是考查了橢圓的方程。

點(diǎn)評(píng):解決該試題的關(guān)鍵是熟悉橢圓的性質(zhì),能結(jié)合橢圓的定義,設(shè)出橢圓的方程,以及結(jié)合焦距和離心率來(lái)得到結(jié)論,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)中心在坐標(biāo)原點(diǎn)的橢圓M與雙曲線(xiàn)2x2-2y2=1有公共焦點(diǎn),且它們的離心率互為倒數(shù)
(Ⅰ)求橢圓M的方程;
(Ⅱ)過(guò)點(diǎn)A(2,0)的直線(xiàn)交橢圓M于P、Q兩點(diǎn),且滿(mǎn)足OP⊥OQ,求直線(xiàn)PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為
4
5
,且過(guò)點(diǎn)(
10
2
3
,1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線(xiàn)l分別切橢圓C與圓M:x2+y2=R2(其中3<R<5)于A、B兩點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)的橢圓經(jīng)過(guò)直線(xiàn)x-2y-4=0與坐標(biāo)軸的兩個(gè)交點(diǎn),則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為
4
5
,且過(guò)點(diǎn)P(
10
2
3
,1)

(1)求橢圓C的標(biāo)準(zhǔn)方程
(2)直線(xiàn)l:y=kx+m分別切橢圓C與圓M:x2+y2=15于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為
4
5
,且過(guò)點(diǎn)(
10
2
3
,1)
,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案