已知平面上的動點(diǎn)到定點(diǎn)的距離與它到定直線的距離相等

(1)求動點(diǎn)的軌跡的方程

(2)過點(diǎn)作直線兩點(diǎn)(在第一象限),若,求直線的方程

(3)試問在曲線上是否存在一點(diǎn),過點(diǎn)作曲線的切線交拋物線兩點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由

 

【答案】

(1)

   (2)

   (3)存在點(diǎn)

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的動點(diǎn)Q到定點(diǎn)F(0,1)的距離與它到定直線y=3的距離相等.
(1)求動點(diǎn)Q的軌跡C1的方程;
(2)過點(diǎn)F作直線l1交C2:x2=4y于A,B兩點(diǎn)(B在第一象限).若|BF|=2|AF|,求直線l1的方程.
(3)試問在曲線C1上是否存在一點(diǎn)M,過點(diǎn)M作曲線C1的切線l2交拋物線C2于D,E兩點(diǎn),使得DF⊥EF?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的動點(diǎn)P(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別是 k1,k2k1k2=-
1
4

(1)求動點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+m與曲線C交于不同的兩點(diǎn)M,N.
①若OM⊥ON(O為坐標(biāo)原點(diǎn)),證明點(diǎn)O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足kBMkBN=-
1
4
,證明直線l過定點(diǎn),并求出這個定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面上的動點(diǎn)P(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別是 k1,k2k1k2=-
1
4

(1)求動點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+m與曲線C交于不同的兩點(diǎn)M,N.
①若OM⊥ON(O為坐標(biāo)原點(diǎn)),證明點(diǎn)O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足kBMkBN=-
1
4
,證明直線l過定點(diǎn),并求出這個定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)壓軸大題訓(xùn)練:解析幾何中的定值、定點(diǎn)問題(解析版) 題型:解答題

已知平面上的動點(diǎn)P(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別是 k1,k2
(1)求動點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+m與曲線C交于不同的兩點(diǎn)M,N.
①若OM⊥ON(O為坐標(biāo)原點(diǎn)),證明點(diǎn)O到直線l的距離為定值,并求出這個定值
②若直線BM,BN的斜率都存在并滿足,證明直線l過定點(diǎn),并求出這個定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案