如圖,平面PAC⊥平面ABC,△ ABC是以AC為斜邊的等腰直角三角形,E、F、O分別為PA,PB,AC的中點,AC=16,PA=PC=10.

(Ⅰ)設(shè)G是OC的中點,證明:FG∥平面BOE;

(Ⅱ)證明:在△ABO內(nèi)存在一點M,使FM⊥平面BOE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年江蘇省高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:解答題

(16分)如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,

P為側(cè)棱SD上的點。

(Ⅰ)求證:ACSD;       

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點E, 使得BE∥平

面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省啟東中學(xué)09-10學(xué)年高二下學(xué)期期中考試(理) 題型:解答題

 如圖,四棱錐S-ABCD 的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,

P為側(cè)棱SD上的點。(Ⅰ)求證:ACSD;       

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點E,        使得BE∥平

面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

 

                                    

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案