某煤礦發(fā)生透水事故時,作業(yè)區(qū)有若干人員被困.救援隊從入口進入之后有兩條巷道通往作業(yè)區(qū)(如下圖),巷道有三個易堵塞點,各點被堵塞的概率都是;巷道有兩個易堵塞點,被堵塞的概率分別為.
(1)求巷道中,三個易堵塞點最多有一個被堵塞的概率;
(2)若巷道中堵塞點個數(shù)為,求的分布列及數(shù)學期望,并按照"平均堵塞點少的巷道是較好的搶險路線"的標準,請你幫助救援隊選擇一條搶險路線,并說明理由.
(1);(2)分布列詳見解析 ; ; 選擇巷道為搶險路線為好.
【解析】
試題分析:(1)利用互獨立事件的概率計算公式即可得出;
(2)寫出隨機變量X的所有可能取值,然后計算相應的概率,列表即得分布列,由數(shù)學期望公式計算期望的大小.
比較走兩條路的數(shù)學期望的大小,即可得出要選擇的路線.
(1)設巷道中,三個易堵塞點最多有一個被堵塞為事件
則 4分
(2)依題意,的可能取值為0,1,2
所以,隨機變量的分布列為:
0 | 1 | 2 | |
8分
(方法一)設巷道中堵塞點個數(shù)為,則的可能取值為0,1,2,3
所以,隨機變量的分布列為:
0 | 1 | 2 | 3 | |
因為,所以選擇巷道為搶險路線為好. 12分
(方法二)設巷道中堵塞點個數(shù)為,則隨機變量,所以,
因為,所以選擇巷道為搶險路線為好 12分
考點:1.離散型隨機變量的分布列和期望;2.互斥事件的概率加法公式.
科目:高中數(shù)學 來源:2013-2014學年河北省高三年級模擬考試文科數(shù)學試卷(解析版) 題型:解答題
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合,且兩坐標系有相同的長度單位,圓C的參數(shù)方程為(為參數(shù)),點Q的極坐標為。
(1)化圓C的參數(shù)方程為極坐標方程;
(2)若直線過點Q且與圓C交于M,N兩點,求當弦MN的長度為最小時,直線的直角坐標方程。
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省鷹潭市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
下列四個命題:
①利用計算機產生0~1之間的均勻隨機數(shù),則事件“”發(fā)生的概率為;
②“”是“或”的充分不必要條件;
③命題“在中,若,則為等腰三角形”的否命題為真命題;
④如果平面不垂直于平面,那么平面內一定不存在直線垂直于平面。
其中說法正確的個數(shù)是( )
A.0個 B.1個 C.2個 D.3個
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省鷹潭市高三第二次模擬考試文科數(shù)學試卷(解析版) 題型:選擇題
表示不超過的最大整數(shù),例如:.
依此規(guī)律,那么( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省鷹潭市高三第二次模擬考試文科數(shù)學試卷(解析版) 題型:選擇題
已知是虛數(shù)單位,則復數(shù)的模為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省盟校高三第二次聯(lián)考理科數(shù)學試卷(解析版) 題型:選擇題
等比數(shù)列{}的前n項和為,若( )
A.27 B.81 C.243 D.729
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省盟校高三第二次聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題
已知等差數(shù)列的首項為,公差為,其前n項和為,若直線與圓的兩個交點關于直線對稱,則數(shù)列的前10項和=( )
A. B. C. D.2
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省盟校高三第一次聯(lián)考文科數(shù)學試卷(解析版) 題型:填空題
若下框圖所給的程序運行結果為S=20,那么判斷框中應填入的關于整數(shù)的條件是 _______________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com