【題目】已知圓:,點(diǎn),直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對于圓上的任一點(diǎn),都有為一常數(shù),試求出所有滿足條件的點(diǎn)的坐標(biāo).
【答案】(1);(2).
【解析】
(1)根據(jù)所求直線與已知直線垂直,可設(shè)出直線方程,再根據(jù)直線與圓相切,所以有(其中表示圓心到直線的距離),可得到直線方程;(2)方法一:假設(shè)存在這樣的點(diǎn),由于的位置不定,所以首先考慮特殊位置,①為圓與軸左交點(diǎn);②為圓與軸右交點(diǎn)這兩種情況,由于對于圓上的任一點(diǎn),都有為一常數(shù),可得①②兩種情況下的相等, 可得到,然后證明在一般的下,為一常數(shù).方法二:設(shè)出,根據(jù)對于圓上的任一點(diǎn),都有為一常數(shù),設(shè)出以及該常數(shù),通過,代入的坐標(biāo)化簡,轉(zhuǎn)化為恒成立問題求解.
(1)已知直線變形為,因?yàn)樗笾本與已知直線垂直,
所以設(shè)所求直線方程為,即.
由直線與圓相切,可知,其中表示圓心到直線的距離,
則,得,故所求直線方程為.
(2)假設(shè)存在這樣的點(diǎn),
當(dāng)為圓與軸左交點(diǎn)時,,
當(dāng)為圓與軸右交點(diǎn)時,
依題意,,解得(舍去),或.
下面證明:點(diǎn)對于圓上任一點(diǎn),都有為一常數(shù).
設(shè),則.
,
從而為常數(shù).
方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,
設(shè)于是,由于在圓上,所以,代入得,
,
即對恒成立,
所以,解得或(舍去),
故存在點(diǎn)對于圓上任一點(diǎn),都有為一常數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=∠BAD=90°,AD>BC.E,F分別為棱AB,PC上的點(diǎn).
(1)求證:平面AFD⊥平面PAB;
(2)若點(diǎn)E滿足,當(dāng)F滿足什么條件時,EF∥平面PAD?請給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個點(diǎn)
B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.將一組數(shù)據(jù)的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,其方差也要加上或減去這個常數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校游園活動有這樣一個游戲項(xiàng)目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機(jī)摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(1)求在1次游戲中,
①摸出3個白球的概率;
②獲獎的概率;
(2)求在2次游戲中獲獎次數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知在上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩名籃球運(yùn)動員某賽季一些場次得分的莖葉圖,其中莖為十位數(shù),葉為個位數(shù),甲、乙兩人得分的中位數(shù)為X甲、X乙,則下列判斷正確的是( )
A. X乙﹣X甲=5,甲比乙得分穩(wěn)定
B. X乙﹣X甲=5,乙比甲得分穩(wěn)定
C. X乙﹣X甲=10,甲比乙得分穩(wěn)定
D. X乙﹣X甲=10,乙比甲得分穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一學(xué)年結(jié)束后,要對某班的50名學(xué)生進(jìn)行文理分班,為了解數(shù)學(xué)對學(xué)生選擇文理科是否有影響,有人對該班的分科情況做了如下的數(shù)據(jù)統(tǒng)計:
理科人數(shù) | 文科人數(shù) | 總計 | |
數(shù)學(xué)成績好的人數(shù) | 25 | 30 | |
數(shù)學(xué)成績差的人數(shù) | 10 | ||
合計 | 15 |
(Ⅰ)根據(jù)數(shù)據(jù)關(guān)系,完成列聯(lián)表;
(Ⅱ)通過計算判斷能否在犯錯誤的概率不超過的前提下認(rèn)為數(shù)學(xué)對學(xué)生選擇文理科有影響.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男女),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男同學(xué) | |||
女同學(xué) | |||
總計 |
(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在分鐘,乙每次解答一道幾何題所用的時間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com