在平面直角坐標系xOy中,已知點M(0,3),直線l:x+y-4=0,點N(x,y)是圓C:x2+y2-2x-1=0上的動點,MA⊥l,NB⊥l,垂足分別為A、B,則線段AB的最大值為________.

3
分析:由題意作出圖象,結合題意可知當直線為m時會使得要求的距離最大,然后把問題轉(zhuǎn)化為平行線AB與m間的距離公式即可求解.
解答:解:(如圖)由題意可得:圓C的方程為(x-1)2+y2=2
故圓C的圓心在(0,0)半徑為,
直線MA⊥l,故直線MA的斜率為1,過點M(0,3)
故直線MA的方程為:y=x+3,
由圖象可知當動點N移動到直線為m是會使得AB最大,此時m與圓相切,
故可設m的方程為:y=x+b,故圓心到直線m的距離d==
解得d=-3,或d=-1(舍去)
故AB的距離為平行線MA與m的距離,由平行線間的距離公式可得AB==3
故答案為:
點評:本題為距離的最值得求解,涉及直線與圓的位置關系,點到直線的距離公式以及平行線間的距離,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,雙曲線中心在原點,焦點在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標原點為極點,x軸的正半軸為極軸建立相應的極坐標系.在此極坐標系中,若圓C的極坐標方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程) 在平面直角坐標系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點為極點,射線ox為極軸建立極坐標系,則圓C的圓心的極坐標為
 
,圓C的極坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣東)在平面直角坐標系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點,則弦AB的長等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(Ⅰ)若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習冊答案