已知x,y的取值如下表:
x 0 1 3 4
y 2.2 4.3 4.8 6.7
從散點圖分析,y與x線性相關,則回歸方程為
.
y
=bx+a必過點
(2,
9
2
(2,
9
2
分析:由線性回歸的性質我們可得:回歸直線必過(
.
X
.
Y
)點,故我們可以從表中抽取數(shù)據(jù),并計算出X,Y的平均數(shù),則(
.
X
,
.
Y
)即為樣本中心點的坐標.
解答:解:
.
X
=
0+1+3+4
4
=2,
.
Y
=
2.2+4.3+4.8+6.7
4
=
9
2
,
故樣本中心點的坐標為(2,
9
2
).
故答案為:(2,
9
2
).
點評:本題考查的知識點是線性回歸方程的性質,回歸直線必過(
.
X
.
Y
)點,將(
.
X
.
Y
)代入回歸直線方程成立,這是我們解與回歸直線類小題最常用的方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x、y的取值如下表:
x 0 1 3 4
y 2.2 4.3 4.8 6.7
從散點圖分析,y與x線性相關,且回歸方程為
y
=0.95x+a,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y的取值如下表所示:
x 2 3 4
y 5 4 6
如果y與x呈線性相關,且線性回歸方程為
y
=bx+
7
2
,則b=
1
2
1
2

y
=bx+a的系數(shù)公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y的取值如下表所示:
x 0 1 3 4
y 2.2 4.3 4.8 6.7
從散點圖分析,y與x線性相關,且y^=0.95x+a,以此預測當x=2時,y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y的取值如下表所示,若y與x線性相關,且
y
=0.95x+
a
,則
a
=
 

x 0 1 3 4
y 2.2 4.3 4.8 6.7

查看答案和解析>>

同步練習冊答案