【題目】分別求出適合下列條件的直線方程:
(Ⅰ)經過點且在x軸上的截距等于在y軸上截距的2倍;
(Ⅱ)經過直線2x+7y﹣4=0與7x﹣21y﹣1=0的交點,且和A(﹣3,1),B(5,7)等距離.

【答案】解:(Ⅰ)當直線不過原點時,設所求直線方程為+=1,
將(﹣3,2)代入所設方程,解得a=,此時,直線方程為x+2y﹣1=0.
當直線過原點時,斜率k=﹣,直線方程為y=﹣x,即2x+3y=0,
綜上可知,所求直線方程為x+2y﹣1=0或2x+3y=0.
(Ⅱ)有解得交點坐標為(1,),
當直線l的斜率k存在時,設l的方程是y﹣=k(x﹣1),即7kx﹣7y+(2﹣7k)=0,
由A、B兩點到直線l的距離相等得=,
解得k=,當斜率k不存在時,即直線平行于y軸,方程為x=1時也滿足條件.
所以直線l的方程是21x﹣28y﹣13=0或x=1
【解析】(Ⅰ)分別討論直線過原點和不過原點兩種情況,設出直線方程,解出即可;
(Ⅱ)先求出直線的交點坐標,設出直線方程,再根據(jù)點到直線的距離公式求出斜率k即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且, , , 的中點.

(1)證明: 平面

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】王明參加某衛(wèi)視的闖關活動,該活動共3關.設他通過第一關的概率為0.8,通過第二、第三關的概率分別為p,q,其中,并且是否通過不同關卡相互獨立.記ξ為他通過的關卡數(shù),其分布列為:

ξ

0

1

2

3

P

0.048

a

b

0.192

(Ⅰ)求王明至少通過1個關卡的概率;

(Ⅱ)求p,q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的右焦點為F,右頂點為A,設離心率為e,且滿足,其中O為坐標原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側棱平面, , , ,點的中點

(1)證明: 平面;

(2)在線段上找一點,使得直線所成角的為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知abc>0,則在下列各選項中,二次函數(shù)f(x)=ax2+bx+c的圖象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯(lián)網+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.

(1) 求圖中的值;

(2) 已知滿意度評分值在[90,100]內的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設其中的女生人數(shù)為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】矩形中, , ,點中點,沿折起至,如下圖所示,點在面的射影落在上.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形,其中,,等邊所在平面與平面垂直.

(Ⅰ)點在棱上,且,的重心,求證:平面;

)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案