如圖,已知橢圓,點(diǎn)B是其下頂點(diǎn),過點(diǎn)B的直線交橢圓C于另一點(diǎn)A(A點(diǎn)在軸下方),且線段AB的中點(diǎn)E在直線上.

(1)求直線AB的方程;

(2)若點(diǎn)P為橢圓C上異于A、B的動點(diǎn),且直線AP,BP分別交直線于點(diǎn)M、N,證明:OM·ON為定值.

(1)(2)詳見解析

【解析】

試題分析:(1)兩點(diǎn)確定一條直線,所以只需再確定A點(diǎn)坐標(biāo)即可,這可利用A在橢圓上及AB中點(diǎn)在直線上聯(lián)立方程組解得:A(,),從而根據(jù)兩點(diǎn)式求出直線AB的方程為

(2)本題涉及的條件為坐標(biāo),所以用分別表示M點(diǎn)、N點(diǎn)坐標(biāo)就是解題方法:由A,P,M三點(diǎn)共線,又點(diǎn)M在直線y=x上,解得M點(diǎn)的橫坐標(biāo),由B,P,N三點(diǎn)共線,點(diǎn)N在直線y=x上,,解得N點(diǎn)的橫坐標(biāo).所以O(shè)M·ON===2

=,又,所以O(shè)M·ON====

試題解析:【解析】
(1)設(shè)點(diǎn)E(m,m),由B(0,-2)得A(2m,2m+2).

代入橢圓方程得,即,

解得(舍). 3分

所以A(,),

故直線AB的方程為. 6分

(2)設(shè),則,即

設(shè),由A,P,M三點(diǎn)共線,即

,

又點(diǎn)M在直線y=x上,解得M點(diǎn)的橫坐標(biāo), 9分

設(shè),由B,P,N三點(diǎn)共線,即,

,

點(diǎn)N在直線y=x上,,解得N點(diǎn)的橫坐標(biāo). 12分

所以O(shè)M·ON===2

====. 16分

考點(diǎn):直線與橢圓位置關(guān)系

考點(diǎn)分析: 考點(diǎn)1:橢圓的標(biāo)準(zhǔn)方程 考點(diǎn)2:橢圓的幾何性質(zhì) 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市高三上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知曲線C1的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為,求曲線C1與曲線C2交點(diǎn)的直角坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

雙曲線的右焦點(diǎn)到漸近線的距離是其到左頂點(diǎn)距離的一半,則雙曲線的

離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

復(fù)數(shù)滿足是虛數(shù)單位),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省蘇州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知圓,直線為直線上一點(diǎn),若圓上存在兩點(diǎn),使得,則點(diǎn)A的橫坐標(biāo)的取值范圍是 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省蘇州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

運(yùn)行如圖所示的流程圖,如果輸入,則輸出的的值為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省常州市高三上學(xué)期期末調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:填空題

曲線在點(diǎn)處的切線方程為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年貴州省貴陽市高三上學(xué)期期末監(jiān)測考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知三棱錐中,側(cè)棱垂直于底面,點(diǎn)的中點(diǎn).

(1)求證:平面

(2)若底面為邊長為的正三角形,,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案