2.已知集合A={x|x<1},B={x|x>3},則∁R(A∪B)={x|1≤x≤3}.

分析 根據(jù)集合并集和補集的定義進行運算即可.

解答 解:∵A={x|x<1},B={x|x>3},
∴A∪B={x|x>3或x<1},
則∁R(A∪B)={x|1≤x≤3},
故答案為:{x|1≤x≤3}

點評 本題主要考查集合的基本運算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.正整數(shù)數(shù)列{an}滿足a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}-n,{a}_{n}>n}\\{{a}_{n}+n,{a}_{n}≤n}\end{array}\right.$,將數(shù)列{an}中所有值為1的項的項數(shù)按從小到大的順序依次排列,得到數(shù)列{nk},則nk+1=3nk+1(k=1,2,3,…).(用nk表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,$\frac{π}{3}<C<\frac{π}{2}$,$\frac{a-b}=\frac{sin2C}{sinA-sin2C}$,a=3,$sinB=\frac{{\sqrt{11}}}{6}$,則b等于( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設函數(shù)f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=x2-x+1,則f(1)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在手繪涂色本的某頁上畫有排成一列的6條未涂色的魚,小明用紅、藍兩種顏色給這些魚涂色,每條魚只能涂一種顏色,兩條相鄰的魚不都涂成紅色,涂色后,既有紅色魚又有藍色魚的涂色方法種數(shù)為( 。
A.14B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知α∈(0,π),tan($α-\frac{π}{4}$)=$\frac{1}{3}$,則sin($\frac{π}{4}+α$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1(m,n$為常數(shù),m>n>0)的左、右焦點分別為F1,F(xiàn)2,P是以橢圓短軸為直徑的圓上任意一點,則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=2n-m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a,b,c∈R,且a>b>c,則下列不等式一定成立的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.2a-b<1C.$\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$D.lg(a-b)>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知{an}是等差數(shù)列,滿足a1=1,a4=-5,數(shù)列{bn}滿足b1=1,b4=21,且{an+bn}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案