已知拋物線C:,(t為參數(shù))設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)M(x,y)在C上運(yùn)動(dòng),點(diǎn)P(x,y)是線段OM的中點(diǎn),則點(diǎn)P的軌跡普通方程為   
【答案】分析:先利用中點(diǎn)坐標(biāo)公式得點(diǎn)P與點(diǎn)M坐標(biāo)之間的關(guān)系,再結(jié)合點(diǎn)M(x,y)在C上運(yùn)動(dòng)知其坐標(biāo)適合曲線C的參數(shù)方程,最終消去參數(shù)即可得到點(diǎn)P軌跡的普通方程.
解答:解:∵點(diǎn)P(x,y)是線段OM的中點(diǎn),
∴x=2x,y=2y,
又點(diǎn)M(x,y)在C上,
∴x=2t2,y=2t,
∴2x=2t2,2y=2t,
消去參數(shù)t得
y2=x
故答案為y2=x.
點(diǎn)評(píng):本題考查點(diǎn)的參數(shù)方程和直角坐標(biāo)的互化及參數(shù)法求點(diǎn)的軌跡方程的方法,屬于基礎(chǔ)題之列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:
x=2t2
y=2t
,(t為參數(shù))設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)M在C上,且點(diǎn)M的縱坐標(biāo)為2,則點(diǎn)M到拋物線焦點(diǎn)的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)坐標(biāo)為F(2,0),點(diǎn)P的坐標(biāo)為(m,0)(m≠0),設(shè)過點(diǎn)P的直線l交拋物線C于A,B兩點(diǎn),點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)Q.
(1)當(dāng)直線l的斜率為1時(shí),求△QAB的面積關(guān)于m的函數(shù)表達(dá)式.
(2)試問在x軸上是否存在一定點(diǎn)T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點(diǎn)T 的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省揭陽市高中畢業(yè)班期末質(zhì)量測(cè)試數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知拋物線C:,(t為參數(shù))設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)M在C上,且點(diǎn)M的縱坐標(biāo)為2,則點(diǎn)M到拋物線焦點(diǎn)的距離為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬試卷11(理科)(解析版) 題型:解答題

已知拋物線C:,(t為參數(shù))設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)M(x,y)在C上運(yùn)動(dòng),點(diǎn)P(x,y)是線段OM的中點(diǎn),則點(diǎn)P的軌跡普通方程為   

查看答案和解析>>

同步練習(xí)冊(cè)答案