15.在△ABC中,已知$∠B=45°,\;AC=\sqrt{2}BC$,則∠C=105°.

分析 由正弦定理可得角A,再運用三角形的內(nèi)角和定理,計算即可得到C.

解答 解:由題意:已知$∠B=45°,\;AC=\sqrt{2}BC$,即b=$\sqrt{2}$a
由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$,則有sinA=$\frac{asin45°}{\sqrt{2}a}=\frac{1}{2}$,
∵0°<A<135°
∴A=30°
則C=180°-30°-45°=105°
故答案為:105°

點評 本題考查三角形的正弦定理和內(nèi)角和定理的運用,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.復數(shù)z=$\frac{3+2i}{i}$ (i為虛數(shù)單位)的虛部為( 。
A.3B.-3C.-3iD.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在三棱錐P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,AC=2,AB=1,∠BAC=60°,則三棱錐P-ABC的外接球的表面積為( 。
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{b^2}=1(b>0)$的一條漸近線方程為3x+2y=0,則b等于3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設(shè)m,n(3≤m≤n)是正整數(shù),數(shù)列Am:a1,a2,…,am,其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若數(shù)列Am滿足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,總存在k(1≤k≤m)有ai+aj=ak,則稱數(shù)列Am是“好數(shù)列”.
(Ⅰ)當m=6,n=100時,
(。┤魯(shù)列A6:11,78,x,y,97,90是一個“好數(shù)列”,試寫出x,y的值,并判斷數(shù)列:11,78,90,x,97,y是否是一個“好數(shù)列”?
(ⅱ)若數(shù)列A6:11,78,a,b,c,d是“好數(shù)列”,且a<b<c<d,求a,b,c,d共有多少種不同的取值?
(Ⅱ)若數(shù)列Am是“好數(shù)列”,且m是偶數(shù),證明:$\frac{{{a_1}+{a_2}+…+{a_m}}}{m}≥\frac{n+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x.
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知a>0且a≠1,函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$滿足f(0)=2,f(-1)=3,則f(f(-3))=( 。
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知向量$\vec a=(-1,\;1)$,$\vec b=(n,\;2)$,若$\vec a•\vec b=\frac{5}{3}$,則n=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,$C=\sqrt{2},∠B=\frac{π}{4},b=2$,則∠A=105°.

查看答案和解析>>

同步練習冊答案