已知二次函數(shù)y=f(x)在x=處取得最小值- (t>0),  f(1)=0.

y=f(x)的表達(dá)式;

若任意實(shí)數(shù)x都滿足等式f(xg(x)+anx+bn=xn+1g(x)]為多項(xiàng)式,n∈N*),試用t表示anbn;

設(shè)圓Cn的方程為(xan)2+(ybn)2=rn2,圓CnCn+1外切(n=1,2,3,…);{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個圓的面積之和,求rn、Sn.

【小題1】f(x)=x2-(t+2)x+t+1

【小題2】an=[(t+1)n+1-1],bn=[1-(t+1n)

【小題3】rn=

Sn=π(r12+r22+…+rn2)=[(t+1)2n-1]


解析:

【小題1】設(shè)f(x)=a(x)2,由f(1)=0得a=1.

f(x)=x2-(t+2)x+t+1.

【小題2】將f(x)=(x-1)[x-(t+1)]代入已知得:

(x-1)[x-(t+1)]g(x)+anx+bn=xn+1,上式對任意的x∈R都成立,取x=1和x=t+1分別代入上式得:

t≠0,解得an=[(t+1)n+1-1],bn=[1-(t+1n)

【小題3】由于圓的方程為(xan)2+(ybn)2=rn2,又由(2)知an+bn=1,故圓Cn的圓心On在直線x+y=1上,又圓Cn與圓Cn+1相切,故有rn+rn+1=an+1an|=(t+1)n+1?

設(shè){rn}的公比為q,則

                                                                 ②÷①得q==t+1,代入①得rn=

Sn=π(r12+r22+…+rn2)=[(t+1)2n-1]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)(x∈R)的圖象過點(diǎn)(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數(shù)y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)圖象的頂點(diǎn)是(-1,3),又f(0)=4,一次函數(shù)y=g(x)的圖象過(-2,0)和(0,2).
(1)求函數(shù)y=f(x)和函數(shù)y=g(x)的解析式;
(2)求關(guān)于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象關(guān)于直線x=2對稱,且在x軸上截得的線段長為2.若f(x)的最小值為-1,求:
(1)函數(shù)f(x)的解析式;
(2)函數(shù)f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象如圖所示:
(1)求函數(shù)y=f(x)的解析式;
(2)根據(jù)圖象寫出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有兩個不相等的實(shí)數(shù)根,根據(jù)函數(shù)圖象及變換知識,求k的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)=x2+bx+c的圖象過點(diǎn)(1,13),且函數(shù)y=f(x-
12
)
是偶函數(shù).
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函數(shù)g(x)在[t,2]上的最大值和最小值;
(3)函數(shù)y=f(x)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案