分析 (1)根據(jù)等邊三角形的性質(zhì)可知A點(diǎn)橫坐標(biāo)為FD的中點(diǎn)橫坐標(biāo),列出方程解出p.
(2)根據(jù)|FA|=|FD|列出方程得出A,D橫坐標(biāo)的關(guān)系,從而得出l的斜率,設(shè)l1方程,與拋物線方程聯(lián)立,由判別式△=0得出l的截距與A點(diǎn)坐標(biāo)的關(guān)系,求出E點(diǎn)坐標(biāo),利用A,F(xiàn),E三點(diǎn)共線,即可證明結(jié)論.
解答 解:(1)拋物線的焦點(diǎn)F($\frac{p}{2}$,0),設(shè)D(t,0),則FD的中點(diǎn)為($\frac{p+2t}{4}$,0).
∵|FA|=|FD|,∴3+$\frac{p}{2}$=|t-$\frac{p}{2}$|,解得t=3+p或t=-3(舍).
∵$\frac{p+2t}{4}$=3,∴$\frac{3p+6}{4}=3$,解得p=2.
∴拋物線方程為y2=4x.
(2)由(1)知F(1,0),設(shè)A($\frac{{m}^{2}}{4}$,m)(m≠0),D(xD,0),
∵|FA|=|FD|,則|xD-1|=$\frac{{m}^{2}}{4}$+1,由xD>0得xD=$\frac{{m}^{2}}{4}$+2,即D($\frac{{m}^{2}}{4}$+2,0).
∴直線l的斜率為kAD=-$\frac{m}{2}$.
設(shè)l1:y=kx+n(k≠0)與拋物線相切,代入可得ky2-4y+4n=0,△=0,所以E($\frac{1}{{k}^{2}}$,$\frac{2}{k}$),
∵A,F(xiàn),E三點(diǎn)共線,∴m($\frac{1}{{k}^{2}}$-1)=$\frac{2}{k}(\frac{{m}^{2}}{4}-1)$,
解得k=$\frac{2}{m}$或k=-$\frac{m}{2}$.
k=$\frac{2}{m}$,E與A重合,舍去,
∴k=-$\frac{m}{2}$,
∴l(xiāng)1∥l.
點(diǎn)評 本題考查了拋物線的性質(zhì),直線與拋物線的關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{-1+5i}{5}$ | B. | $\frac{-1+7i}{5}$ | C. | 1+i | D. | $\frac{-1+5i}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{4}$,0) | B. | ($\frac{π}{8}$,0) | C. | ($\frac{π}{2}$,0) | D. | ($\frac{5π}{24}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com