已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求a1和a2的值;
(2)求數(shù)列{an},{bn}的通項an和bn;
(3)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn.
分析:(1)先利用an是Sn與2的等差中項把1代入即可求a1,再把2代入即可求a2的值;
(2)利用Sn=2an-2,可得Sn-1=2an-1-2,兩式作差即可求數(shù)列{an}的相鄰兩項之間的關(guān)系,找到規(guī)律即可求出通項;對于數(shù)列{bn},直接利用點P(bn,bn+1)在直線x-y+2=0上,代入得數(shù)列{bn}是等差數(shù)列即可求通項;
(3)先把所求結(jié)論代入求出數(shù)列{cn}的通項,再利用數(shù)列求和的錯位相減法即可求出其各項的和.
解答:解:(1)∵a
n是S
n與2的等差中項
∴S
n=2a
n-2∴a
1=S
1=2a
1-2,解得a
1=2
a
1+a
2=S
2=2a
2-2,解得a
2=4
(2)∵S
n=2a
n-2,S
n-1=2a
n-1-2,
又S
n-S
n-1=a
n,n≥2
∴a
n=2a
n-2a
n-1,
∵a
n≠0,
∴
=2(n≥2),即數(shù)列{a
n}是等比數(shù)列,∵a
1=2,∴a
n=2
n∵點P(b
n,b
n+1)在直線x-y+2=0上,∴b
n-b
n+1+2=0,
∴b
n+1-b
n=2,即數(shù)列{b
n}是等差數(shù)列,又b
1=1,∴b
n=2n-1,
(3)∵c
n=(2n-1)2
n∴T
n=a
1b
1+a
2b
2+a
nb
n=1×2+3×2
2+5×2
3++(2n-1)2
n,
∴2T
n=1×2
2+3×2
3++(2n-3)2
n+(2n-1)2
n+1因此:-T
n=1×2+(2×2
2+2×2
3++2×2
n)-(2n-1)2
n+1,
即:-T
n=1×2+(2
3+2
4++2
n+1)-(2n-1)2
n+1,
∴T
n=(2n-3)2
n+1+6
點評:本題考查了數(shù)列求和的錯位相減法.錯位相減法適用于通項為一等差數(shù)列乘一等比數(shù)列組成的新數(shù)列.考查計算能力.