12.已知集合A={x|y=x2},集合B={y|y=x2},則∁AB等于( 。
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

分析 求出A,B中的解集確定出A,B,再根據(jù)補(bǔ)集的定義求出即可.

解答 解:∵集合A={x|y=x2}=R,集合B={y|y=x2}=[0,+∞),
∴∁AB=(-∞,0)
故選:A

點(diǎn)評(píng) 此題考查了補(bǔ)集的運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\frac{{2cos(\frac{3}{2}π+θ)+cos(π+θ)}}{{3sin(π-θ)+2sin(\frac{5}{2}π+θ)}}=\frac{1}{5}$;
(1)求tanθ的值;
(2)求sin2θ+3sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)x,y滿(mǎn)足f (x+y)=f(x)+f (y)+0.5,且f (0.5)=0,當(dāng)x>0.5時(shí),f(x)>0,給出以下結(jié)論:
①f (0)=-0.5;
②f (-1)=-1.5;   
③f(x)為R上的減函數(shù);   
④f(x)+0.5為奇函數(shù);
⑤f(x)+1為偶函數(shù).
其中正確結(jié)論的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若向量$\overrightarrow{a}$=(1,1)與$\overrightarrow$=(λ,-2)的夾角為鈍角,則λ的取值范圍是(-∞,-2)∪(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2+bx-alnx(a≠0)
(1)當(dāng)b=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若x=2是函數(shù)f(x)的極值點(diǎn),1是函數(shù)f(x)的一個(gè)零點(diǎn),求a+b的值;
(3)若對(duì)任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算:
(1)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{0.1^{-2}}$
(2)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}+{x^{-2}}+3}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x3-ax2-3x.
(Ⅰ)若x=-$\frac{1}{3}$是f(x)的極大值點(diǎn),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個(gè)交點(diǎn),若存在,求出b的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.2016年春節(jié)期間,小明和小張去上海旅游,參觀(guān)了東方明珠塔,兩人為了測(cè)量它的高度,站在A處測(cè)得塔尖C的仰角為75.5°,前進(jìn)38.5m后到達(dá)B處,沒(méi)得塔尖C的仰角為80°,如圖所示(其中D為塔底),則東方明珠塔的高度約為( 。▍⒖紨(shù)據(jù):sin80°≈0.985,sin75.5°≈0.968,sin4.5°≈0.078)
A.456mB.438mC.350mD.471m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示,是一個(gè)正方體的表面展開(kāi)圖,A、B、C均為棱的中點(diǎn),D是頂點(diǎn),則在正方體中,異面直線(xiàn)AB和CD的夾角的余弦值為( 。
A.$\frac{{\sqrt{2}}}{5}$B.$\frac{{\sqrt{3}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案